Department of General Internal Medicine and Psychosomatics, Medical University Hospital Heidelberg, Heidelberg, Germany.
BMC Med Res Methodol. 2010 Apr 1;10:28. doi: 10.1186/1471-2288-10-28.
In recent years, electronic diaries are increasingly used in medical research and practice to investigate patients' processes and fluctuations in symptoms over time. To model dynamic dependence structures and feedback mechanisms between symptom-relevant variables, a multivariate time series method has to be applied.
We propose to analyse the temporal interrelationships among the variables by a structural modelling approach based on graphical vector autoregressive (VAR) models. We give a comprehensive description of the underlying concepts and explain how the dependence structure can be recovered from electronic diary data by a search over suitable constrained (graphical) VAR models.
The graphical VAR approach is applied to the electronic diary data of 35 obese patients with and without binge eating disorder (BED). The dynamic relationships for the two subgroups between eating behaviour, depression, anxiety and eating control are visualized in two path diagrams. Results show that the two subgroups of obese patients with and without BED are distinguishable by the temporal patterns which influence their respective eating behaviours.
The use of the graphical VAR approach for the analysis of electronic diary data leads to a deeper insight into patient's dynamics and dependence structures. An increasing use of this modelling approach could lead to a better understanding of complex psychological and physiological mechanisms in different areas of medical care and research.
近年来,电子日记在医学研究和实践中被越来越多地用于研究患者随时间推移的症状过程和波动。为了模拟症状相关变量之间的动态依赖结构和反馈机制,必须应用多元时间序列方法。
我们建议通过基于图形向量自回归 (VAR) 模型的结构建模方法来分析变量之间的时间相互关系。我们全面描述了基本概念,并解释了如何通过对合适的约束(图形)VAR 模型进行搜索,从电子日记数据中恢复依赖结构。
图形 VAR 方法应用于 35 名有和没有暴食障碍 (BED) 的肥胖患者的电子日记数据。两个亚组之间的饮食行为、抑郁、焦虑和饮食控制之间的动态关系在两个路径图中进行了可视化。结果表明,有和没有 BED 的肥胖患者亚组可以通过影响各自饮食行为的时间模式来区分。
使用图形 VAR 方法分析电子日记数据可以更深入地了解患者的动态和依赖结构。这种建模方法的广泛应用可能会导致对医疗和研究不同领域中复杂心理和生理机制的更好理解。