Suppr超能文献

分泌颗粒膜蛋白通过多泡体回收。

Secretory granule membrane protein recycles through multivesicular bodies.

机构信息

Institute of Biomedicine/Anatomy, University of Helsinki, FIN-00014, Helsinki, Finland.

出版信息

Traffic. 2010 Jul 1;11(7):972-86. doi: 10.1111/j.1600-0854.2010.01066.x. Epub 2010 Apr 1.

Abstract

The recycling of secretory granule membrane proteins that reach the plasma membrane following exocytosis is poorly understood. As a model, peptidylglycine alpha-amidating monooxygenase (PAM), a granule membrane protein that catalyzes a final step in peptide processing was examined. Ultrastructural analysis of antibody internalized by PAM and surface biotinylation showed efficient return of plasma membrane PAM to secretory granules. Electron microscopy revealed the rapid movement of PAM from early endosomes to the limiting membranes of multivesicular bodies and then into intralumenal vesicles. Wheat germ agglutinin and PAM antibody internalized simultaneously were largely segregated when they reached multivesicular bodies. Mutation of basally phosphorylated residues (Thr(946), Ser(949)) in the cytoplasmic domain of PAM to Asp (TS/DD) substantially slowed its entry into intralumenal vesicles. Mutation of the same sites to Ala (TS/AA) facilitated the entry of internalized PAM into intralumenal vesicles and its subsequent return to secretory granules. Entry of PAM into intralumenal vesicles is also associated with a juxtamembrane endoproteolytic cleavage that releases a 100-kDa soluble PAM fragment that can be returned to secretory granules. Controlled entry into the intralumenal vesicles of multivesicular bodies plays a key role in the recycling of secretory granule membrane proteins.

摘要

分泌颗粒膜蛋白在胞吐作用后到达质膜的再循环过程了解甚少。作为一个模型,研究了催化肽加工最后一步的颗粒膜蛋白肽基甘氨酸 α-酰胺化单加氧酶 (PAM)。通过 PAM 内化的抗体的超微结构分析和表面生物素化显示,质膜 PAM 有效地返回分泌颗粒。电子显微镜显示 PAM 从早期内体快速移动到多泡体的限膜,然后进入腔内小泡。当同时内化麦胚凝集素和 PAM 抗体到达多泡体时,它们在很大程度上被分离。将 PAM 细胞质结构域中基础磷酸化残基(Thr(946)、Ser(949))突变为 Asp(TS/DD)显著减慢了其进入腔内小泡的速度。将相同的位点突变为 Ala(TS/AA)促进了内化的 PAM 进入腔内小泡及其随后返回分泌颗粒。PAM 进入腔内小泡也与质膜附近的内切蛋白酶裂解有关,释放出 100kDa 的可溶性 PAM 片段,可返回分泌颗粒。多泡体腔内小泡的受控进入在分泌颗粒膜蛋白的再循环中起着关键作用。

相似文献

1
Secretory granule membrane protein recycles through multivesicular bodies.
Traffic. 2010 Jul 1;11(7):972-86. doi: 10.1111/j.1600-0854.2010.01066.x. Epub 2010 Apr 1.
3
Access of a membrane protein to secretory granules is facilitated by phosphorylation.
J Biol Chem. 2001 Oct 26;276(43):40326-37. doi: 10.1074/jbc.M011460200. Epub 2001 Aug 27.
4
O-Glycosylation of a Secretory Granule Membrane Enzyme Is Essential for Its Endocytic Trafficking.
J Biol Chem. 2016 Apr 29;291(18):9835-50. doi: 10.1074/jbc.M115.711838. Epub 2016 Mar 9.
5
Signaling from the secretory granule to the nucleus: Uhmk1 and PAM.
Mol Endocrinol. 2010 Aug;24(8):1543-58. doi: 10.1210/me.2009-0381. Epub 2010 Jun 23.
6
A histidine-rich linker region in peptidylglycine α-amidating monooxygenase has the properties of a pH sensor.
J Biol Chem. 2014 May 2;289(18):12404-20. doi: 10.1074/jbc.M113.545947. Epub 2014 Mar 13.
7
Trafficking of a secretory granule membrane protein is sensitive to copper.
J Biol Chem. 2007 Aug 10;282(32):23362-71. doi: 10.1074/jbc.M702891200. Epub 2007 Jun 11.
8
Retrieval and reuse of pituitary secretory granule proteins.
J Biol Chem. 2005 Jul 8;280(27):25424-35. doi: 10.1074/jbc.M414156200. Epub 2005 May 19.
10
Differential trafficking of soluble and integral membrane secretory granule-associated proteins.
J Cell Biol. 1994 Jan;124(1-2):33-41. doi: 10.1083/jcb.124.1.33.

引用本文的文献

1
IFRD1 is required for maintenance of bladder epithelial homeostasis.
iScience. 2024 Oct 28;27(12):111282. doi: 10.1016/j.isci.2024.111282. eCollection 2024 Dec 20.
2
A new role for IFRD1 in regulation of ER stress in bladder epithelial homeostasis.
bioRxiv. 2024 Jan 10:2024.01.09.574887. doi: 10.1101/2024.01.09.574887.
3
Resistance exercise stress: theoretical mechanisms for growth hormone processing and release from the anterior pituitary somatotroph.
Eur J Appl Physiol. 2023 Sep;123(9):1867-1878. doi: 10.1007/s00421-023-05263-8. Epub 2023 Jul 8.
4
Peptidylglycine α-amidating monooxygenase is required for atrial secretory granule formation.
Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17820-17831. doi: 10.1073/pnas.2004410117. Epub 2020 Jul 13.
5
EIPR1 controls dense-core vesicle cargo retention and EARP complex localization in insulin-secreting cells.
Mol Biol Cell. 2020 Jan 1;31(1):59-79. doi: 10.1091/mbc.E18-07-0469. Epub 2019 Nov 13.
7
Control of insulin granule formation and function by the ABC transporters ABCG1 and ABCA1 and by oxysterol binding protein OSBP.
Mol Biol Cell. 2018 May 15;29(10):1238-1257. doi: 10.1091/mbc.E17-08-0519. Epub 2018 Mar 22.
8
BAIAP3, a C2 domain-containing Munc13 protein, controls the fate of dense-core vesicles in neuroendocrine cells.
J Cell Biol. 2017 Jul 3;216(7):2151-2166. doi: 10.1083/jcb.201702099. Epub 2017 Jun 16.
10
The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles.
PLoS Genet. 2016 May 18;12(5):e1006074. doi: 10.1371/journal.pgen.1006074. eCollection 2016 May.

本文引用的文献

1
Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function.
Nat Rev Mol Cell Biol. 2009 Sep;10(9):623-35. doi: 10.1038/nrm2745. Epub 2009 Aug 12.
2
Secretory granule to the nucleus: role of a multiply phosphorylated intrinsically unstructured domain.
J Biol Chem. 2009 Sep 18;284(38):25723-34. doi: 10.1074/jbc.M109.035782. Epub 2009 Jul 27.
3
Dual roles of the mammalian GARP complex in tethering and SNARE complex assembly at the trans-golgi network.
Mol Cell Biol. 2009 Oct;29(19):5251-63. doi: 10.1128/MCB.00495-09. Epub 2009 Jul 20.
4
Molecular assemblies and membrane domains in multivesicular endosome dynamics.
Exp Cell Res. 2009 May 15;315(9):1567-73. doi: 10.1016/j.yexcr.2008.12.006. Epub 2008 Dec 24.
5
In vitro budding of intralumenal vesicles into late endosomes is regulated by Alix and Tsg101.
Mol Biol Cell. 2008 Nov;19(11):4942-55. doi: 10.1091/mbc.e08-03-0239. Epub 2008 Sep 3.
6
The somatodendritic endosomal regulator NEEP21 facilitates axonal targeting of L1/NgCAM.
J Cell Biol. 2008 Feb 25;180(4):827-42. doi: 10.1083/jcb.200707143.
8
Trafficking of a secretory granule membrane protein is sensitive to copper.
J Biol Chem. 2007 Aug 10;282(32):23362-71. doi: 10.1074/jbc.M702891200. Epub 2007 Jun 11.
9
Biogenesis and function of multivesicular bodies.
Annu Rev Cell Dev Biol. 2007;23:519-47. doi: 10.1146/annurev.cellbio.23.090506.123319.
10
The emerging shape of the ESCRT machinery.
Nat Rev Mol Cell Biol. 2007 May;8(5):355-68. doi: 10.1038/nrm2162.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验