Département de Chimie Moléculaire, UMR CNRS 5250, Université Joseph Fourier, BP 53, 38041 Grenoble cedex 9, France.
Chemistry. 2010 May 25;16(20):6106-14. doi: 10.1002/chem.200903456.
A new biomolecular device for investigating the interactions of ligands with constrained DNA quadruplex topologies, using surface plasmon resonance (SPR), is reported. Biomolecular systems containing an intermolecular-like G-quadruplex motif 1 (parallel G-quadruplex conformation), an intramolecular G-quadruplex 2, and a duplex DNA 3 have been designed and developed. The method is based on the concept of template-assembled synthetic G-quadruplex (TASQ), whereby quadruplex DNA structures are assembled on a template that allows precise control of the parallel G-quadruplex conformation. Various known G-quadruplex ligands have been used to investigate the affinities of ligands for intermolecular 1 and intramolecular 2 DNA quadruplexes. As anticipated, ligands displaying a pi-stacking binding mode showed a higher binding affinity for intermolecular-like G-quadruplexes 1, whereas ligands with other binding modes (groove and/or loop binding) showed no significant difference in their binding affinities for the two quadruplexes 1 or 2. In addition, the present method has also provided information about the selectivity of ligands for G-quadruplex DNA over the duplex DNA. A numerical parameter, termed the G-quadruplex binding mode index (G4-BMI), has been introduced to express the difference in the affinities of ligands for intermolecular G-quadruplex 1 against intramolecular G-quadruplex 2. The G-quadruplex binding mode index (G4-BMI) of a ligand is defined as follows: G4-BMI=K(D)(intra)/K(D)(inter), where K(D)(intra) is the dissociation constant for intramolecular G-quadruplex 2 and K(D)(inter) is the dissociation constant for intermolecular G-quadruplex 1. In summary, the present work has demonstrated that the use of parallel-constrained quadruplex topology provides more precise information about the binding modes of ligands.
一种新的生物分子设备,用于使用表面等离子体共振(SPR)研究配体与约束 DNA 四链体拓扑结构的相互作用,已被报道。设计并开发了包含分子间类似 G-四链体基序 1(平行 G-四链体构象)、分子内 G-四链体 2 和双链 DNA 3 的生物分子系统。该方法基于模板组装合成 G-四链体(TASQ)的概念,通过该概念可以在允许精确控制平行 G-四链体构象的模板上组装四链体 DNA 结构。已经使用各种已知的 G-四链体配体来研究配体与分子间 1 和分子内 2 DNA 四链体的亲和力。正如预期的那样,显示出 pi-堆积结合模式的配体对分子间类似 G-四链体 1 表现出更高的结合亲和力,而具有其他结合模式(沟槽和/或环结合)的配体对两种四链体 1 或 2 的结合亲和力没有显着差异。此外,本方法还提供了有关配体对 G-四链体 DNA 与双链 DNA 选择性的信息。已经引入了一个数值参数,称为 G-四链体结合模式指数(G4-BMI),以表示配体对分子间 G-四链体 1 与分子内 G-四链体 2 的亲和力差异。配体的 G-四链体结合模式指数(G4-BMI)定义如下:G4-BMI=K(D)(intra)/K(D)(inter),其中 K(D)(intra) 是分子内 G-四链体 2 的解离常数,K(D)(inter) 是分子间 G-四链体 1 的解离常数。总之,本工作表明,使用平行约束四链体拓扑结构提供了有关配体结合模式的更精确信息。