Suppr超能文献

荟萃分析中的同质性检验I. 单参数情形:标准化均数差

Testing for homogeneity in meta-analysis I. The one-parameter case: standardized mean difference.

作者信息

Kulinskaya Elena, Dollinger Michael B, Bjørkestøl Kirsten

机构信息

School of Computing Sciences, University of East Anglia, Norwich, U.K. Department of Mathematics, Pacific Lutheran University, Tacoma, Washington 98447, USA.

出版信息

Biometrics. 2011 Mar;67(1):203-12. doi: 10.1111/j.1541-0420.2010.01442.x.

Abstract

Meta-analysis seeks to combine the results of several experiments in order to improve the accuracy of decisions. It is common to use a test for homogeneity to determine if the results of the several experiments are sufficiently similar to warrant their combination into an overall result. Cochran's Q statistic is frequently used for this homogeneity test. It is often assumed that Q follows a chi-square distribution under the null hypothesis of homogeneity, but it has long been known that this asymptotic distribution for Q is not accurate for moderate sample sizes. Here, we present an expansion for the mean of Q under the null hypothesis that is valid when the effect and the weight for each study depend on a single parameter, but for which neither normality nor independence of the effect and weight estimators is needed. This expansion represents an order O(1/n) correction to the usual chi-square moment in the one-parameter case. We apply the result to the homogeneity test for meta-analyses in which the effects are measured by the standardized mean difference (Cohen's d-statistic). In this situation, we recommend approximating the null distribution of Q by a chi-square distribution with fractional degrees of freedom that are estimated from the data using our expansion for the mean of Q. The resulting homogeneity test is substantially more accurate than the currently used test. We provide a program available at the Paper Information link at the Biometrics website http://www.biometrics.tibs.org for making the necessary calculations.

摘要

元分析旨在合并多个实验的结果,以提高决策的准确性。通常会使用齐性检验来确定多个实验的结果是否足够相似,从而保证可以将它们合并为一个总体结果。 Cochr an's Q 统计量经常用于此齐性检验。人们通常假定在齐性的原假设下 Q 服从卡方分布,但长期以来人们都知道,对于中等样本量,Q 的这种渐近分布并不准确。在此,我们给出在原假设下 Q 的均值的一种展开式,当每个研究的效应和权重依赖于单个参数时该展开式是有效的,而且既不需要效应和权重估计量服从正态分布,也不需要它们相互独立。在单参数情形下,这种展开式表示对通常的卡方矩的 (O(1/n)) 阶修正。我们将该结果应用于元分析的齐性检验,其中效应通过标准化均数差(Cohen's d 统计量)来衡量。在这种情况下,我们建议用自由度为分数的卡方分布来近似 Q 的原分布,该自由度是使用我们给出的 Q 的均值展开式从数据中估计得到的。由此得到的齐性检验比当前使用的检验要准确得多。我们提供了一个程序,可在《生物统计学》网站 http://www.biometrics.tibs.org 的论文信息链接处获取,用于进行必要的计算。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验