Suppr超能文献

蛋白质折叠状态是动力学枢纽。

Protein folded states are kinetic hubs.

机构信息

Department of Chemistry, Stanford University, Stanford, CA 94305, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10890-5. doi: 10.1073/pnas.1003962107. Epub 2010 Jun 1.

Abstract

Understanding molecular kinetics, and particularly protein folding, is a classic grand challenge in molecular biophysics. Network models, such as Markov state models (MSMs), are one potential solution to this problem. MSMs have recently yielded quantitative agreement with experimentally derived structures and folding rates for specific systems, leaving them positioned to potentially provide a deeper understanding of molecular kinetics that can lead to experimentally testable hypotheses. Here we use existing MSMs for the villin headpiece and NTL9, which were constructed from atomistic simulations, to accomplish this goal. In addition, we provide simpler, humanly comprehensible networks that capture the essence of molecular kinetics and reproduce qualitative phenomena like the apparent two-state folding often seen in experiments. Together, these models show that protein dynamics are dominated by stochastic jumps between numerous metastable states and that proteins have heterogeneous unfolded states (many unfolded basins that interconvert more rapidly with the native state than with one another) yet often still appear two-state. Most importantly, we find that protein native states are hubs that can be reached quickly from any other state. However, metastability and a web of nonnative states slow the average folding rate. Experimental tests for these findings and their implications for other fields, like protein design, are also discussed.

摘要

理解分子动力学,特别是蛋白质折叠,是分子生物物理学中的一个经典的重大挑战。网络模型,如马尔可夫状态模型 (MSM),是解决这个问题的一种潜在方法。MSM 最近已经与特定系统的实验得出的结构和折叠速率取得了定量一致,使它们有可能提供对分子动力学的更深入理解,从而产生可通过实验检验的假设。在这里,我们使用现有的源自原子模拟的 villin 头部和 NTL9 的 MSM 来实现这一目标。此外,我们还提供了更简单、易于理解的网络,这些网络捕捉了分子动力学的本质,并再现了实验中常见的定性现象,如明显的两态折叠。这些模型共同表明,蛋白质动力学主要由大量亚稳态之间的随机跳跃所主导,并且蛋白质具有异构的未折叠状态(许多未折叠的盆地与天然状态之间的相互转换比彼此之间更快),但仍经常呈现两态。最重要的是,我们发现蛋白质天然状态是可以从任何其他状态快速到达的枢纽。然而,亚稳性和非天然状态的网络会降低平均折叠速率。还讨论了这些发现及其对其他领域(如蛋白质设计)的影响的实验检验。

相似文献

1
Protein folded states are kinetic hubs.
Proc Natl Acad Sci U S A. 2010 Jun 15;107(24):10890-5. doi: 10.1073/pnas.1003962107. Epub 2010 Jun 1.
3
Slow unfolded-state structuring in Acyl-CoA binding protein folding revealed by simulation and experiment.
J Am Chem Soc. 2012 Aug 1;134(30):12565-77. doi: 10.1021/ja302528z. Epub 2012 Jul 19.
5
Simple few-state models reveal hidden complexity in protein folding.
Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17807-13. doi: 10.1073/pnas.1201810109. Epub 2012 Jul 9.
6
What Markov State Models Can and Cannot Do: Correlation versus Path-Based Observables in Protein-Folding Models.
J Chem Theory Comput. 2021 May 11;17(5):3119-3133. doi: 10.1021/acs.jctc.0c01154. Epub 2021 Apr 27.
7
Common structural transitions in explicit-solvent simulations of villin headpiece folding.
Biophys J. 2009 Oct 21;97(8):2338-47. doi: 10.1016/j.bpj.2009.08.012.
8
Kinetic network models of tryptophan mutations in β-hairpins reveal the importance of non-native interactions.
J Chem Theory Comput. 2015 Jun 9;11(6):2801-12. doi: 10.1021/acs.jctc.5b00088.
9
Markov state models provide insights into dynamic modulation of protein function.
Acc Chem Res. 2015 Feb 17;48(2):414-22. doi: 10.1021/ar5002999. Epub 2015 Jan 3.

引用本文的文献

1
Unveiling the Conformational Dynamics of the Histone Tails Using Markov State Modeling.
J Chem Theory Comput. 2025 May 13;21(9):4921-4938. doi: 10.1021/acs.jctc.5c00196. Epub 2025 Apr 27.
2
Precision spatiotemporal analysis of large-scale compound-protein interactions through molecular dynamics simulation.
PNAS Nexus. 2025 Mar 22;4(3):pgaf094. doi: 10.1093/pnasnexus/pgaf094. eCollection 2025 Mar.
3
Unveiling the Conformational Dynamics of the Histone Tails Using Markov State Modeling.
bioRxiv. 2025 Jan 21:2025.01.16.633411. doi: 10.1101/2025.01.16.633411.
5
A Stochastic Landscape Approach for Protein Folding State Classification.
J Chem Theory Comput. 2024 Jul 9;20(13):5428-5438. doi: 10.1021/acs.jctc.4c00464. Epub 2024 Jun 26.
6
Hierarchical consciousness: the Nested Observer Windows model.
Neurosci Conscious. 2024 Mar 18;2024(1):niae010. doi: 10.1093/nc/niae010. eCollection 2024.
8
Folding@home: Achievements from over 20 years of citizen science herald the exascale era.
Biophys J. 2023 Jul 25;122(14):2852-2863. doi: 10.1016/j.bpj.2023.03.028. Epub 2023 Mar 21.
9
Molecular mechanisms of spontaneous curvature and softening in complex lipid bilayer mixtures.
Biophys J. 2022 Sep 6;121(17):3188-3199. doi: 10.1016/j.bpj.2022.07.036. Epub 2022 Aug 4.
10
The importance of the compact disordered state in the fuzzy interactions between intrinsically disordered proteins.
Chem Sci. 2022 Jan 28;13(8):2363-2377. doi: 10.1039/d1sc06825c. eCollection 2022 Feb 23.

本文引用的文献

1
Enhanced modeling via network theory: Adaptive sampling of Markov state models.
J Chem Theory Comput. 2010;6(3):787-94. doi: 10.1021/ct900620b.
2
Unfolded-state dynamics and structure of protein L characterized by simulation and experiment.
J Am Chem Soc. 2010 Apr 7;132(13):4702-9. doi: 10.1021/ja908369h.
3
Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1-39).
J Am Chem Soc. 2010 Feb 10;132(5):1526-8. doi: 10.1021/ja9090353.
4
Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations.
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19011-6. doi: 10.1073/pnas.0905466106. Epub 2009 Nov 3.
5
Rapid equilibrium sampling initiated from nonequilibrium data.
Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19765-9. doi: 10.1073/pnas.0909088106. Epub 2009 Sep 29.
7
Experimental determination of upper bound for transition path times in protein folding from single-molecule photon-by-photon trajectories.
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):11837-44. doi: 10.1073/pnas.0901178106. Epub 2009 Jul 7.
8
The roles of entropy and kinetics in structure prediction.
PLoS One. 2009 Jun 9;4(6):e5840. doi: 10.1371/journal.pone.0005840.
9
Intrinsic disorder in proteins associated with neurodegenerative diseases.
Front Biosci (Landmark Ed). 2009 Jun 1;14(14):5188-238. doi: 10.2741/3594.
10
Ruggedness in the folding landscape of protein L.
HFSP J. 2008 Dec;2(6):388-95. doi: 10.2976/1.3013702. Epub 2008 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验