Department of Biological Chemistry and Interdisciplinary Center for Neuronal Computation (ICNC), The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Neurobiol Dis. 2010 Oct;40(1):348-59. doi: 10.1016/j.nbd.2010.06.011. Epub 2010 Jun 30.
Down syndrome (DS) associates with impaired brain functions, but the underlying mechanism(s) are yet unclear. The "gene dosage" hypothesis predicts that in DS, overexpression of a single gene can impair multiple brain functions through a signal amplification effect due to impaired regulatory mechanism(s). Here, we report findings attributing to impairments in the splicing process such a regulatory role. We have used DS fetal brain samples in search for initial evidence and employed engineered mice with MMU16 partial trisomy (Ts65Dn) or direct excess of the splicing-associated nuclear kinase Dyrk1A, overdosed in DS for further analyses. We present specific albeit modest changes in the DS brain's splicing machinery with subsequently amplified effects in target transcripts; and we demonstrate that engineered excess of Dyrk1A can largely recapitulate these changes. Specifically, in both the fetal DS brains and the Dyrk1A overdose models, we found ample modestly modified splicing-associated transcripts which apparently induced secondary enhancement in exon inclusion of key synaptic transcripts. Thus, DS-reduced levels of the dominant-negative TRKBT1 transcript, but not other TRKB mRNA transcripts, were accompanied by corresponding decreases in BDNF. In addition, the DS brains and Dyrk1A overdosage models showed selective changes in the transcripts composition of neuroligin mRNAs as well as reductions in the "synaptic" acetylcholinesterase variant AChE-S mRNA and corresponding increases in the stress-inducible AChE-R mRNA variant, yielding key synaptic proteins with unusual features. In cotransfected cells, Dyrk1A overdosage caused parallel changes in the splicing pattern of an AChE mini-gene, suggesting that Dyrk1A overdosage is both essential and sufficient to induce the observed change in the composition of AChE mRNA variants. Furthermore, the Dyrk1A overdosage animal models showed pronounced changes in the structure of neuronal nuclear speckles, where splicing events take place and in SR proteins phosphorylation known to be required for the splicing process. Together, our findings demonstrate DS-like brain splicing machinery malfunctioning in Dyrk1A overexpressing mice. Since individual splicing choices may alter cell fate determination, axon guidance, and synaptogenesis, these findings suggest the retrieval of balanced splicing as a goal for DS therapeutic manipulations early in DS development.
唐氏综合征(DS)与大脑功能障碍有关,但潜在的机制尚不清楚。“基因剂量”假说预测,在 DS 中,单个基因的过度表达可能会通过信号放大效应损害多种大脑功能,因为调节机制受损。在这里,我们报告了归因于剪接过程的发现,该过程具有这种调节作用。我们使用 DS 胎脑样本寻找初步证据,并使用 MMU16 部分三体(Ts65Dn)或直接过量具有剪接相关核激酶 Dyrk1A 的工程化小鼠进行进一步分析,该基因在 DS 中过量表达。我们提出了 DS 大脑剪接机制的具体但适度的变化,随后在靶转录物中放大了这些变化;我们证明,工程化过量的 Dyrk1A 可以很大程度上再现这些变化。具体来说,在胎儿 DS 大脑和 Dyrk1A 过表达模型中,我们发现大量适度修饰的剪接相关转录物,这些转录物显然诱导了关键突触转录物外显子包含的二次增强。因此,DS 中显性负 TRKBT1 转录物的水平降低,但其他 TRKB mRNA 转录物没有降低,与 BDNF 相应降低有关。此外,DS 大脑和 Dyrk1A 过表达模型显示神经黏附素 mRNA 的转录物组成发生选择性变化,以及“突触”乙酰胆碱酯酶变体 AChE-S mRNA 减少和应激诱导的 AChE-R mRNA 变体增加,产生具有异常特征的关键突触蛋白。在共转染细胞中,Dyrk1A 过表达导致 AChE 微基因剪接模式的平行变化,表明 Dyrk1A 过表达对于诱导观察到的 AChE mRNA 变体组成变化是必要和充分的。此外,Dyrk1A 过表达动物模型显示神经元核斑点结构的明显变化,其中发生剪接事件,以及 SR 蛋白磷酸化,这是剪接过程所必需的。总之,我们的发现表明 Dyrk1A 过表达小鼠中存在类似于 DS 的大脑剪接机制功能障碍。由于单个剪接选择可能改变细胞命运决定、轴突导向和突触发生,这些发现表明,在 DS 发育早期,恢复平衡剪接作为 DS 治疗干预的目标。