Suppr超能文献

神经元钙稳态和失衡。

Neuronal calcium homeostasis and dysregulation.

机构信息

Laboratory of Neurosciences, National Institute on Aging, Baltimore, Maryland, USA.

出版信息

Antioxid Redox Signal. 2011 Apr 1;14(7):1261-73. doi: 10.1089/ars.2010.3386. Epub 2010 Nov 30.

Abstract

The calcium ion (Ca(2+)) is the main second messenger that helps to transmit depolarization status and synaptic activity to the biochemical machinery of a neuron. These features make Ca(2+) regulation a critical process in neurons, which have developed extensive and intricate Ca(2+) signaling pathways. High intensity Ca(2+) signaling necessitates high ATP consumption to restore basal (low) intracellular Ca(2+) levels after Ca(2+) influx through plasma membrane receptor and voltage-dependent ion channels. Ca(2+) influx may also lead to increased generation of mitochondrial reactive oxygen species (ROS). Impaired abilities of neurons to maintain cellular energy levels and to suppress ROS may impact Ca(2+) signaling during aging and in neurodegenerative disease processes. This review focuses on mitochondrial and endoplasmic reticulum Ca(2+) homeostasis and how they relate to synaptic Ca(2+) signaling processes, neuronal energy metabolism, and ROS generation. Also, the contribution of altered Ca(2+) signaling to neurodegeneration during aging will be considered. Advances in understanding the molecular regulation of Ca(2+) homeostasis and how it is perturbed in neurological disorders may lead to therapeutic strategies that modulate neuronal Ca(2+) signaling to enhance function and counteract disease processes.

摘要

钙离子(Ca(2+))是主要的第二信使,有助于将去极化状态和突触活动传递到神经元的生化机制中。这些特性使得 Ca(2+)调节成为神经元中的关键过程,神经元已经发展出广泛而复杂的 Ca(2+)信号通路。高强度的 Ca(2+)信号需要大量的 ATP 消耗,以在 Ca(2+)通过质膜受体和电压依赖性离子通道内流后恢复基础(低)细胞内 Ca(2+)水平。Ca(2+)内流也可能导致线粒体活性氧(ROS)的产生增加。神经元维持细胞能量水平和抑制 ROS 的能力受损可能会影响衰老和神经退行性疾病过程中的 Ca(2+)信号。这篇综述重点介绍了线粒体和内质网 Ca(2+)稳态,以及它们与突触 Ca(2+)信号转导、神经元能量代谢和 ROS 生成的关系。此外,还将考虑改变的 Ca(2+)信号在衰老过程中对神经退行性变的贡献。对 Ca(2+)稳态分子调节的理解以及它在神经紊乱中如何受到干扰的进展,可能会导致治疗策略的出现,这些策略可以调节神经元 Ca(2+)信号,以增强功能并对抗疾病过程。

相似文献

1
Neuronal calcium homeostasis and dysregulation.
Antioxid Redox Signal. 2011 Apr 1;14(7):1261-73. doi: 10.1089/ars.2010.3386. Epub 2010 Nov 30.
3
Neuronal calcium signaling: function and dysfunction.
Cell Mol Life Sci. 2014 Aug;71(15):2787-814. doi: 10.1007/s00018-013-1550-7. Epub 2014 Jan 19.
5
Oxidative stress and protein aggregation during biological aging.
Exp Gerontol. 2001 Sep;36(9):1539-50. doi: 10.1016/s0531-5565(01)00139-5.
6
Roles for the Endoplasmic Reticulum in Regulation of Neuronal Calcium Homeostasis.
Cells. 2019 Oct 10;8(10):1232. doi: 10.3390/cells8101232.
7
Mitostasis, Calcium and Free Radicals in Health, Aging and Neurodegeneration.
Biomolecules. 2021 Jul 10;11(7):1012. doi: 10.3390/biom11071012.
8
The Interplay between Ca Signaling Pathways and Neurodegeneration.
Int J Mol Sci. 2019 Nov 28;20(23):6004. doi: 10.3390/ijms20236004.
9
Remodeling of Intracellular Ca Homeostasis in Rat Hippocampal Neurons Aged In Vitro.
Int J Mol Sci. 2020 Feb 24;21(4):1549. doi: 10.3390/ijms21041549.
10
Regulators of mitochondrial Ca(2+) homeostasis in cerebral ischemia.
Cell Tissue Res. 2014 Aug;357(2):395-405. doi: 10.1007/s00441-014-1807-y. Epub 2014 Apr 9.

引用本文的文献

1
Association between maternal asthma and ASD/ADHD in offspring: A meta-analysis based on observational studies.
NPJ Prim Care Respir Med. 2025 Jul 8;35(1):32. doi: 10.1038/s41533-025-00440-y.
2
Voltage-Gated Calcium Channels Play a Central Role in Caenorhabditis elegans Response to Noxious Heat.
Neurochem Res. 2025 Jun 27;50(4):215. doi: 10.1007/s11064-025-04445-4.
3
Impact of static magnetic field exposure on and expression in hepatic cells of obese mice.
J Adv Vet Anim Res. 2025 Mar 25;12(1):231-237. doi: 10.5455/javar.2025.l890. eCollection 2025 Mar.
6
C/EBP Homologous Protein Expression in Retinal Ganglion Cells Induces Neurodegeneration in Mice.
Int J Mol Sci. 2025 Feb 21;26(5):1858. doi: 10.3390/ijms26051858.
8
Calcium Ions in the Physiology and Pathology of the Central Nervous System.
Int J Mol Sci. 2024 Dec 6;25(23):13133. doi: 10.3390/ijms252313133.
10
Mechanism of N6-Methyladenosine Modification in the Pathogenesis of Depression.
Mol Neurobiol. 2025 May;62(5):5484-5500. doi: 10.1007/s12035-024-04614-6. Epub 2024 Nov 18.

本文引用的文献

1
Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging?
Free Radic Biol Med. 2010 Mar 1;48(5):642-55. doi: 10.1016/j.freeradbiomed.2009.12.015. Epub 2009 Dec 28.
2
The pentose-phosphate pathway in neuronal survival against nitrosative stress.
IUBMB Life. 2010 Jan;62(1):14-8. doi: 10.1002/iub.280.
3
Alzheimer's disease and neuronal network activity.
Neuromolecular Med. 2010 Mar;12(1):44-7. doi: 10.1007/s12017-009-8100-3. Epub 2009 Nov 3.
4
Somatic Ca2+ signaling in cerebellar Purkinje neurons.
J Neurosci Res. 2010 Feb 1;88(2):275-89. doi: 10.1002/jnr.22204.
6
Mitochondrial calcium and the permeability transition in cell death.
Biochim Biophys Acta. 2009 Nov;1787(11):1395-401. doi: 10.1016/j.bbabio.2009.06.009. Epub 2009 Jul 1.
7
TRPC channels as STIM1-regulated SOCs.
Channels (Austin). 2009 Jul-Aug;3(4):221-5. doi: 10.4161/chan.3.4.9198. Epub 2009 Jul 15.
8
SR/ER-mitochondrial local communication: calcium and ROS.
Biochim Biophys Acta. 2009 Nov;1787(11):1352-62. doi: 10.1016/j.bbabio.2009.06.004. Epub 2009 Jun 13.
9
Role of glycogen synthase kinase-3beta in cardioprotection.
Circ Res. 2009 Jun 5;104(11):1240-52. doi: 10.1161/CIRCRESAHA.109.197996.
10
STIMulating store-operated Ca(2+) entry.
Nat Cell Biol. 2009 Jun;11(6):669-77. doi: 10.1038/ncb0609-669.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验