López García De Lomana Adrián, Beg Qasim K, De Fabritiis G, Villà-Freixa Jordi
Computational Biochemistry and Biophysics Laboratory, Research Unit on Biomedical Informatics, IMIM/Universitat Pompeu Fabra, Barcelona, Spain.
J Comput Biol. 2010 Jul;17(7):869-78. doi: 10.1089/cmb.2008.0240.
Various molecular interaction networks have been claimed to follow power-law decay for their global connectivity distribution. It has been proposed that there may be underlying generative models that explain this heavy-tailed behavior by self-reinforcement processes such as classical or hierarchical scale-free network models. Here, we analyze a comprehensive data set of protein-protein and transcriptional regulatory interaction networks in yeast, an Escherichia coli metabolic network, and gene activity profiles for different metabolic states in both organisms. We show that in all cases the networks have a heavy-tailed distribution, but most of them present significant differences from a power-law model according to a stringent statistical test. Those few data sets that have a statistically significant fit with a power-law model follow other distributions equally well. Thus, while our analysis supports that both global connectivity interaction networks and activity distributions are heavy-tailed, they are not generally described by any specific distribution model, leaving space for further inferences on generative models. Supplementary Material is available online at www.liebertonline.com.
各种分子相互作用网络据称其全局连通性分布遵循幂律衰减。有人提出,可能存在潜在的生成模型,通过自我强化过程(如经典或分层无标度网络模型)来解释这种重尾行为。在此,我们分析了酵母中蛋白质 - 蛋白质和转录调控相互作用网络、大肠杆菌代谢网络以及这两种生物不同代谢状态下的基因活性谱的综合数据集。我们表明,在所有情况下,网络都具有重尾分布,但根据严格的统计检验,它们中的大多数与幂律模型存在显著差异。那些与幂律模型有统计学显著拟合的少数数据集同样也能很好地拟合其他分布。因此,虽然我们的分析支持全局连通性相互作用网络和活性分布都是重尾的,但它们通常不能用任何特定的分布模型来描述,这为生成模型的进一步推断留出了空间。补充材料可在www.liebertonline.com在线获取。