Suppr超能文献

病原体刺激期间 CD4+ T 细胞收缩的调节。

Regulation of CD4+ T-cell contraction during pathogen challenge.

机构信息

Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA.

出版信息

Immunol Rev. 2010 Jul;236:110-24. doi: 10.1111/j.1600-065X.2010.00921.x.

Abstract

Signals orchestrating productive CD4+ T-cell responses are well documented; however, the regulation of contraction of CD4+ T-cell effector populations following the resolution of primary immune responses is not well understood. While distinct mechanisms of T-cell death have been defined, the relative importance of discrete death pathways during the termination of immune responses in vivo remains unclear. Here, we review the current understanding of cell-intrinsic and -extrinsic variables that regulate contraction of CD4+ T-cell effector populations through multiple pathways that operate both initially during T-cell priming and later during the effector phase. We discuss the relative importance of antigen-dependent and -independent mechanisms of CD4+ T-cell contraction during in vivo responses, with a special emphasis on influenza virus infection. In this model, we highlight the roles of greater differentiation and presence in the lung of CD4+ effector T cells, as well as their polarization to particular T-helper subsets, in maximizing contraction. We also discuss the role of autocrine interleukin-2 in limiting the extent of contraction, and we point out that these same factors regulate contraction during secondary CD4+ T-cell responses.

摘要

协调有效 CD4+T 细胞反应的信号已得到充分证实;然而,对于原发性免疫反应后 CD4+T 细胞效应群的收缩调节,人们还了解甚少。虽然已经确定了不同的 T 细胞死亡机制,但在体内免疫反应终止过程中离散死亡途径的相对重要性尚不清楚。在这里,我们通过多种途径综述了调节 CD4+T 细胞效应群收缩的细胞内在和外在变量的最新认识,这些途径最初在 T 细胞激活过程中发挥作用,后来在效应阶段也发挥作用。我们讨论了在体内反应中,抗原依赖性和非依赖性 CD4+T 细胞收缩机制的相对重要性,特别强调了流感病毒感染模型。在该模型中,我们强调了 CD4+效应 T 细胞在肺部的更高分化和存在,以及它们向特定辅助性 T 细胞亚群的极化,在最大限度地收缩方面的作用。我们还讨论了自分泌白细胞介素 2 在限制收缩程度方面的作用,并指出这些相同的因素也调节了二次 CD4+T 细胞反应的收缩。

相似文献

1
Regulation of CD4+ T-cell contraction during pathogen challenge.
Immunol Rev. 2010 Jul;236:110-24. doi: 10.1111/j.1600-065X.2010.00921.x.
2
Dendritic cells are what they eat: how their metabolism shapes T helper cell polarization.
Curr Opin Immunol. 2019 Jun;58:16-23. doi: 10.1016/j.coi.2019.02.003. Epub 2019 Mar 12.
3
In Vitro Differentiation of Effector CD4 T Helper Cell Subsets.
Methods Mol Biol. 2019;1960:75-84. doi: 10.1007/978-1-4939-9167-9_6.
4
Dynamic Roles for IL-2-STAT5 Signaling in Effector and Regulatory CD4 T Cell Populations.
J Immunol. 2020 Oct 1;205(7):1721-1730. doi: 10.4049/jimmunol.2000612.
5
Multilayer regulation of CD4 T cell subset differentiation in the era of single cell genomics.
Adv Immunol. 2019;141:1-31. doi: 10.1016/bs.ai.2018.12.001. Epub 2019 Jan 3.
8
The importance of co-stimulation in the orchestration of T helper cell differentiation.
Immunol Cell Biol. 2015 Oct;93(9):780-8. doi: 10.1038/icb.2015.45. Epub 2015 Apr 21.
9
Functionally diverse subsets in CD4 T cell responses against influenza.
J Clin Immunol. 2009 Mar;29(2):145-50. doi: 10.1007/s10875-008-9266-4. Epub 2008 Dec 3.
10
CD4 CTL: living up to the challenge.
Semin Immunol. 2013 Nov 15;25(4):273-81. doi: 10.1016/j.smim.2013.10.022.

引用本文的文献

1
Applications and limitations of the passenger hypothesis for HIV reservoir persistence and cure.
J Virol. 2025 Jul 22;99(7):e0071425. doi: 10.1128/jvi.00714-25. Epub 2025 Jun 4.
2
Ex Pluribus Unum: The CD4 T Cell Response against Influenza A Virus.
Cells. 2024 Apr 5;13(7):639. doi: 10.3390/cells13070639.
3
CD4 memory has a hierarchical structure created by requirements for infection-derived signals at an effector checkpoint.
Front Immunol. 2023 Dec 12;14:1306433. doi: 10.3389/fimmu.2023.1306433. eCollection 2023.
4
CD4 Effector TCR Avidity for Peptide on APC Determines the Level of Memory Generated.
J Immunol. 2023 Jun 15;210(12):1950-1961. doi: 10.4049/jimmunol.2200337.
5
Systemic CD4 Immunity and PD-L1/PD-1 Blockade Immunotherapy.
Int J Mol Sci. 2022 Oct 31;23(21):13241. doi: 10.3390/ijms232113241.
6
P2X7 receptor as the regulator of T-cell function in intestinal barrier disruption.
World J Gastroenterol. 2022 Sep 28;28(36):5265-5279. doi: 10.3748/wjg.v28.i36.5265.
7
Dendritic cell Piezo1 directs the differentiation of T1 and T cells in cancer.
Elife. 2022 Aug 22;11:e79957. doi: 10.7554/eLife.79957.
8
Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19.
Nat Med. 2022 May;28(5):1050-1062. doi: 10.1038/s41591-022-01724-3. Epub 2022 Feb 17.
9
SARS-CoV-2-specific circulating T follicular helper cells correlate with neutralizing antibodies and increase during early convalescence.
PLoS Pathog. 2021 Jul 16;17(7):e1009761. doi: 10.1371/journal.ppat.1009761. eCollection 2021 Jul.
10
Systemic CD4 Immunity as a Key Contributor to PD-L1/PD-1 Blockade Immunotherapy Efficacy.
Front Immunol. 2020 Nov 30;11:586907. doi: 10.3389/fimmu.2020.586907. eCollection 2020.

本文引用的文献

2
CD44 regulates survival and memory development in Th1 cells.
Immunity. 2010 Jan 29;32(1):104-15. doi: 10.1016/j.immuni.2009.10.011. Epub 2010 Jan 14.
3
Different routes of bacterial infection induce long-lived TH1 memory cells and short-lived TH17 cells.
Nat Immunol. 2010 Jan;11(1):83-9. doi: 10.1038/ni.1826. Epub 2009 Nov 22.
4
Unlike Th1, Th17 cells mediate sustained autoimmune inflammation and are highly resistant to restimulation-induced cell death.
J Immunol. 2009 Dec 1;183(11):7547-56. doi: 10.4049/jimmunol.0900519. Epub 2009 Nov 4.
6
Heterogeneity of CD4+ memory T cells: functional modules for tailored immunity.
Eur J Immunol. 2009 Aug;39(8):2076-82. doi: 10.1002/eji.200939722.
8
Plasmodium falciparum apical membrane antigen 1 vaccine elicits multifunctional CD4 cytokine-producing and memory T cells.
Vaccine. 2009 Aug 20;27(38):5239-46. doi: 10.1016/j.vaccine.2009.06.066. Epub 2009 Jul 8.
10
Plasticity of CD4+ T cell lineage differentiation.
Immunity. 2009 May;30(5):646-55. doi: 10.1016/j.immuni.2009.05.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验