Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada.
J Am Chem Soc. 2010 Aug 25;132(33):11792-8. doi: 10.1021/ja104926h.
In this paper we demonstrate that the Kubas interaction, a nondissociative form of weak hydrogen chemisorption with binding enthalpies in the ideal 20-30 kJ/mol range for room-temperature hydrogen storage, can be exploited in the design of a new class of hydrogen storage materials which avoid the shortcomings of hydrides and physisorpion materials. This was accomplished through the synthesis of novel vanadium hydrazide gels that use low-coordinate V centers as the principal Kubas H(2) binding sites with only a negligible contribution from physisorption. Materials were synthesized at vanadium-to-hydrazine ratios of 4:3, 1:1, 1:1.5, and 1:2 and characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption, elemental analysis, infrared spectroscopy, and electron paramagnetic resonance spectroscopy. The material with the highest capacity possesses an excess reversible storage of 4.04 wt % at 77 K and 85 bar, corresponding to a true volumetric adsorption of 80 kg H(2)/m(3) and an excess volumetric adsorption of 60.01 kg/m(3). These values are in the range of the ultimate U.S. Department of Energy goal for volumetric density (70 kg/m(3)) as well as the best physisorption material studied to date (49 kg H(2)/m(3) for MOF-177). This material also displays a surprisingly high volumetric density of 23.2 kg H(2)/m(3) at room temperature and 85 bar--roughly 3 times higher than that of compressed gas and approaching the DOE 2010 goal of 28 kg H(2)/m(3). These materials possess linear isotherms and enthalpies that rise on coverage and have little or no kinetic barrier to adsorption or desorption. In a practical system these materials would use pressure instead of temperature as a toggle and can thus be used in compressed gas tanks, currently employed in many hydrogen test vehicles, to dramatically increase the amount of hydrogen stored and therefore the range of any vehicle.
本文证明了库巴斯相互作用(Kubas interaction),一种非解离形式的弱氢化学吸附,其结合焓在理想的 20-30 kJ/mol 范围内,可用于设计一类新的储氢材料,避免了氢化物和物理吸附材料的缺点。这是通过合成新型的钒酰肼凝胶来实现的,该凝胶使用低配位 V 中心作为主要的库巴斯 H2 结合位点,只有微不足道的物理吸附贡献。材料是在 V 与肼的比例为 4:3、1:1、1:1.5 和 1:2 下合成的,并通过 X 射线粉末衍射、X 射线光电子能谱、氮气吸附、元素分析、红外光谱和电子顺磁共振光谱进行了表征。具有最高容量的材料在 77 K 和 85 bar 下具有 4.04wt%的过量可逆储存,相当于 80kgH2/m3 的真实体积吸附和 60.01kg/m3 的过量体积吸附。这些值处于美国能源部(Department of Energy)对体积密度(70kg/m3)的最终目标范围内,也处于迄今为止研究的最佳物理吸附材料(MOF-177 的 49kgH2/m3)范围内。该材料在 85bar 和室温下的体积密度也高达 23.2kgH2/m3,大约是压缩气体的 3 倍,接近美国能源部 2010 年的 28kgH2/m3 的目标。这些材料具有线性等温线和随覆盖度升高而升高的焓值,并且对吸附和解吸几乎没有或没有动力学障碍。在实际系统中,这些材料将使用压力而不是温度作为开关,因此可以用于压缩气体罐中,这些压缩气体罐目前被许多氢测试车辆使用,以显著增加储存的氢气量,从而增加任何车辆的行驶里程。