Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina.
Proteins. 2010 Nov 1;78(14):2961-72. doi: 10.1002/prot.22819.
The first and rate-limiting step of the kynurenine pathway, in which tryptophan (Trp) is converted to N-formylkynurenine is catalyzed by two heme-containing proteins, Indoleamine 2,3-dioxygenase (IDO), and Tryptophan 2,3-dioxygenase (TDO). In mammals, TDO is found exclusively in liver tissue, IDO is found ubiquitously in all tissues. IDO has become increasingly popular in pharmaceutical research as it was found to be involved in many physiological situations, including immune escape of cancer. More importantly, small-molecule inhibitors of IDO are currently utilized in cancer therapy. One of the main concerns for the design of human IDO (hIDO) inhibitors is that they should be selective enough to avoid inhibition of TDO. In this work, we have used a combination of classical molecular dynamics (MD) and hybrid quantum-classical (QM/MM) methodologies to establish the structural basis that determine the differences in (a) the interactions of TDO and IDO with small ligands (CO/O(2)) and (b) the substrate stereo-specificity in hIDO and TDO. Our results indicate that the differences in small ligand bound structures of IDO and TDO arise from slight differences in the structure of the bound substrate complex. The results also show that substrate stereo-specificity of TDO is achieved by the perfect fit of L-Trp, but not D-Trp, which exhibits weaker interactions with the protein matrix. For hIDO, the presence of multiple stable binding conformations for L/D-Trp reveal the existence of a large and dynamic active site. Taken together, our data allow determination of key interactions useful for the future design of more potent hIDO-selective inhibitors.
色氨酸(Trp)转化为 N-甲酰犬尿氨酸的犬尿酸途径的第一步和限速步骤由两种含有血红素的蛋白质催化,即吲哚胺 2,3-双加氧酶(IDO)和色氨酸 2,3-双加氧酶(TDO)。在哺乳动物中,TDO 仅存在于肝组织中,IDO 则广泛存在于所有组织中。IDO 在药物研究中越来越受欢迎,因为它被发现参与了许多生理情况,包括癌症的免疫逃逸。更重要的是,IDO 的小分子抑制剂目前被用于癌症治疗。人 IDO(hIDO)抑制剂设计的主要关注点之一是它们应该具有足够的选择性,以避免抑制 TDO。在这项工作中,我们结合了经典分子动力学(MD)和混合量子经典(QM/MM)方法,以确定决定以下差异的结构基础:(a)TDO 和 IDO 与小分子配体(CO/O2)的相互作用,以及(b)hIDO 和 TDO 中的底物立体特异性。我们的结果表明,IDO 和 TDO 中结合小分子的结构差异源于结合底物复合物结构的微小差异。结果还表明,TDO 的底物立体特异性是通过 L-Trp 的完美匹配实现的,而 D-Trp 则与蛋白质基质的相互作用较弱。对于 hIDO,L/D-Trp 的多种稳定结合构象的存在揭示了其活性位点的存在和动态性。总的来说,我们的数据允许确定用于未来设计更有效的 hIDO 选择性抑制剂的关键相互作用。