Suppr超能文献

迷走脑干回路在胃功能控制中的可塑性。

Plasticity of vagal brainstem circuits in the control of gastric function.

机构信息

Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA.

出版信息

Neurogastroenterol Motil. 2010 Nov;22(11):1154-63. doi: 10.1111/j.1365-2982.2010.01592.x. Epub 2010 Aug 29.

Abstract

BACKGROUND

Sensory information from the viscera, including the gastrointestinal (GI) tract, is transmitted through the afferent vagus via a glutamatergic synapse to neurons of the nucleus tractus solitarius (NTS), which integrate this sensory information to regulate autonomic functions and homeostasis. The integrated response is conveyed to, amongst other nuclei, the preganglionic neurons of the dorsal motor nucleus of the vagus (DMV) using mainly GABA, glutamate and catecholamines as neurotransmitters. Despite being modulated by almost all the neurotransmitters tested so far, the glutamatergic synapse between NTS and DMV does not appear to be tonically active in the control of gastric motility and tone. Conversely, tonic inhibitory GABAergic neurotransmission from the NTS to the DMV appears critical in setting gastric tone and motility, yet, under basal conditions, this synapse appears resistant to modulation.

PURPOSE

Here, we review the available evidence suggesting that vagal efferent output to the GI tract is regulated, perhaps even controlled, in an 'on-demand' and efficient manner in response to ever-changing homeostatic conditions. The focus of this review is on the plasticity induced by variations in the levels of second messengers in the brainstem neurons that form vago-vagal reflex circuits. Emphasis is placed upon the modulation of GABAergic transmission to DMV neurons and the modulation of afferent input from the GI tract by neurohormones/neurotransmitters and macronutrients. Derangement of this 'on-demand' organization of brainstem vagal circuits may be one of the factors underlying the pathophysiological changes observed in functional dyspepsia or hyperglycemic gastroparesis.

摘要

背景

来自内脏(包括胃肠道)的感觉信息通过传入迷走神经通过谷氨酸能突触传递到孤束核(NTS)的神经元,这些神经元整合这些感觉信息以调节自主功能和体内平衡。整合后的反应通过主要使用 GABA、谷氨酸和儿茶酚胺作为神经递质传递到其他核,包括迷走神经背核(DMV)的节前神经元。尽管该整合反应受到迄今为止测试的几乎所有神经递质的调制,但 NTS 和 DMV 之间的谷氨酸能突触似乎在控制胃动力和张力方面没有持续活跃。相反,来自 NTS 到 DMV 的持续抑制性 GABA 能神经传递对于设定胃张力和动力至关重要,但在基础条件下,该突触似乎对调制具有抗性。

目的

在这里,我们回顾了现有的证据,这些证据表明,迷走传出神经对胃肠道的输出是通过一种“按需”和有效的方式进行调节的,以响应不断变化的体内平衡条件。本综述的重点是在形成迷走神经反射回路的脑干神经元中第二信使水平变化引起的可塑性。强调了对 DMV 神经元的 GABA 能传递的调制以及对来自胃肠道的传入输入的调制通过神经激素/神经递质和宏量营养素。这种脑干迷走神经回路的“按需”组织的紊乱可能是功能性消化不良或高血糖性胃轻瘫中观察到的病理生理变化的因素之一。

相似文献

1
Plasticity of vagal brainstem circuits in the control of gastric function.
Neurogastroenterol Motil. 2010 Nov;22(11):1154-63. doi: 10.1111/j.1365-2982.2010.01592.x. Epub 2010 Aug 29.
2
Plasticity of vagal brainstem circuits in the control of gastrointestinal function.
Auton Neurosci. 2011 Apr 26;161(1-2):6-13. doi: 10.1016/j.autneu.2010.11.001. Epub 2010 Dec 13.
3
Short-term receptor trafficking in the dorsal vagal complex: an overview.
Auton Neurosci. 2006 Jun 30;126-127:2-8. doi: 10.1016/j.autneu.2006.01.019. Epub 2006 Mar 6.
4
Vagal afferent fibres determine the oxytocin-induced modulation of gastric tone.
J Physiol. 2013 Jun 15;591(12):3081-100. doi: 10.1113/jphysiol.2013.253732. Epub 2013 Apr 15.
5
Brainstem circuits regulating gastric function.
Annu Rev Physiol. 2006;68:279-305. doi: 10.1146/annurev.physiol.68.040504.094635.
6
Inhibitory neurotransmission regulates vagal efferent activity and gastric motility.
Exp Biol Med (Maywood). 2016 Jun;241(12):1343-50. doi: 10.1177/1535370216654228.
7
Vagal afferent control of opioidergic effects in rat brainstem circuits.
J Physiol. 2006 Sep 15;575(Pt 3):761-76. doi: 10.1113/jphysiol.2006.111104. Epub 2006 Jul 6.
8
Sex differences in GABAergic neurotransmission to rat DMV neurons.
Am J Physiol Gastrointest Liver Physiol. 2019 Oct 1;317(4):G476-G483. doi: 10.1152/ajpgi.00112.2019. Epub 2019 Aug 8.
9
Gastric vagal motoneuron function is maintained following experimental spinal cord injury.
Neurogastroenterol Motil. 2014 Dec;26(12):1717-29. doi: 10.1111/nmo.12452. Epub 2014 Oct 15.
10
GABA signaling in the nucleus tractus solitarius sets the level of activity in dorsal motor nucleus of the vagus cholinergic neurons in the vagovagal circuit.
Am J Physiol Gastrointest Liver Physiol. 2009 Jan;296(1):G101-11. doi: 10.1152/ajpgi.90504.2008. Epub 2008 Nov 13.

引用本文的文献

2
Vagal Sensory Gut-Brain Pathways That Control Eating-Satiety and Beyond.
Compr Physiol. 2025 Apr;15(2):e70010. doi: 10.1002/cph4.70010.
5
A neural circuit for gastric motility disorders driven by gastric dilation in mice.
Front Neurosci. 2023 Feb 22;17:1069198. doi: 10.3389/fnins.2023.1069198. eCollection 2023.
6
Autonomic control of energy balance and glucose homeostasis.
Exp Mol Med. 2022 Apr;54(4):370-376. doi: 10.1038/s12276-021-00705-9. Epub 2022 Apr 26.
7
Fibroblast Growth Factor 19 Increases the Excitability of Pre-Motor Glutamatergic Dorsal Vagal Complex Neurons From Hyperglycemic Mice.
Front Endocrinol (Lausanne). 2021 Nov 11;12:765359. doi: 10.3389/fendo.2021.765359. eCollection 2021.
8
Brain-gut communication: vagovagal reflexes interconnect the two "brains".
Am J Physiol Gastrointest Liver Physiol. 2021 Nov 1;321(5):G576-G587. doi: 10.1152/ajpgi.00214.2021. Epub 2021 Oct 13.
9
Altered physiology of gastrointestinal vagal afferents following neurotrauma.
Neural Regen Res. 2021 Feb;16(2):254-263. doi: 10.4103/1673-5374.290883.
10
A Novel Susceptibility Locus Near GRIK2 Associated With Erosive Esophagitis in a Korean Cohort.
Clin Transl Gastroenterol. 2020 Mar;11(3):e00145. doi: 10.14309/ctg.0000000000000145.

本文引用的文献

1
Modulation of inhibitory neurotransmission in brainstem vagal circuits by NPY and PYY is controlled by cAMP levels.
Neurogastroenterol Motil. 2009 Dec;21(12):1309-e126. doi: 10.1111/j.1365-2982.2009.01367.x. Epub 2009 Jul 20.
2
Relationship among brain and blood glucose levels and spontaneous and glucoprivic feeding.
J Neurosci. 2009 May 27;29(21):7015-22. doi: 10.1523/JNEUROSCI.0334-09.2009.
3
The versatility of the vagus.
Physiol Behav. 2009 Jul 14;97(5):531-6. doi: 10.1016/j.physbeh.2009.01.009. Epub 2009 Jan 22.
4
Cholecystokinin and gut-brain signalling.
Regul Pept. 2009 Jun 5;155(1-3):6-10. doi: 10.1016/j.regpep.2009.03.015. Epub 2009 Apr 2.
5
Glucose increases synaptic transmission from vagal afferent central nerve terminals via modulation of 5-HT3 receptors.
Am J Physiol Gastrointest Liver Physiol. 2008 Nov;295(5):G1050-7. doi: 10.1152/ajpgi.90288.2008. Epub 2008 Sep 18.
6
Chronic sustained and intermittent hypoxia reduce function of ATP-sensitive potassium channels in nucleus of the solitary tract.
Am J Physiol Regul Integr Comp Physiol. 2008 Nov;295(5):R1555-62. doi: 10.1152/ajpregu.90390.2008. Epub 2008 Sep 10.
7
Pathogenesis of dyspepsia.
Dig Dis. 2008;26(3):194-202. doi: 10.1159/000121346. Epub 2008 May 6.
9
Organization and properties of GABAergic neurons in solitary tract nucleus (NTS).
J Neurophysiol. 2008 Apr;99(4):1712-22. doi: 10.1152/jn.00038.2008. Epub 2008 Feb 13.
10
D-glucose modulates synaptic transmission from the central terminals of vagal afferent fibers.
Am J Physiol Gastrointest Liver Physiol. 2008 Mar;294(3):G757-63. doi: 10.1152/ajpgi.00576.2007. Epub 2008 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验