Suppr超能文献

基因组学缺失的图形用户界面。

The missing graphical user interface for genomics.

机构信息

Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.

出版信息

Genome Biol. 2010;11(8):128. doi: 10.1186/gb-2010-11-8-128. Epub 2010 Aug 25.

Abstract

The Galaxy package empowers regular users to perform rich DNA sequence analysis through a much-needed and user-friendly graphical web interface. See research article http://genomebiology.com/2010/11/8/R86 RESEARCH HIGHLIGHT: With the advent of affordable and high-throughput DNA sequencing, sequencing is becoming an essential component in nearly every genetics lab. These data are being generated to probe sequence variations, to understand transcribed, regulated or methylated DNA elements, and to explore a host of other biological features across the tree of life and across a range of environments and conditions. Given this deluge of data, novices and experts alike are facing the daunting challenge of trying to analyze the raw sequence data computationally. With so many tools available and so many assays to analyze, how can one be expected to stay current with the state of the art? How can one be expected to learn to use each tool and construct robust end-to-end analysis pipelines, all while ensuring that input formats, command-line options, sequence databases and program libraries are set correctly? Finally, once the analysis is complete, how does one ensure the results are reproducible and transparent for others to scrutinize and study?In an article published in Genome Biology, Jeremy Goecks, Anton Nekrutenko, James Taylor and the rest of the Galaxy Team (Goecks et al. 1) make a great advance towards resolving these critical questions with the latest update to their Galaxy Project. The ambitious goal of Galaxy is to empower regular users to carry out their own computational analysis without having to be an expert in computational biology or computer science. Galaxy adds a desperately needed graphical user interface to genomics research, making data analysis universally accessible in a web browser, and freeing users from the minutiae of archaic command-line parameters, data formats and scripting languages. Data inputs and computational steps are selected from dynamic graphical menus, and the results are displayed in intuitive plots and summaries that encourage interactive workflows and the exploration of hypotheses. The underlying data analysis tools can be almost any piece of software, written in any language, but all their complexity is neatly hidden inside of Galaxy, allowing users to focus on scientific rather than technical questions.

摘要

Galaxy 软件包通过一个急需的用户友好的图形化网络界面,使普通用户能够进行丰富的 DNA 序列分析。详见研究论文:http://genomebiology.com/2010/11/8/R86

研究亮点

随着经济实惠、高通量的 DNA 测序技术的出现,测序成为几乎每个遗传学实验室的基本组成部分。这些数据被用来探测序列变异,了解转录、调控或甲基化的 DNA 元件,并探索生命之树以及各种环境和条件下的其他生物特征。面对如此庞大的数据洪流,新手和专家都面临着计算分析原始序列数据的艰巨挑战。有如此多的工具可供选择,需要分析的检测方法也如此之多,如何才能跟上最新技术的步伐?如何才能学会使用每种工具并构建稳健的端到端分析管道,同时确保输入格式、命令行选项、序列数据库和程序库设置正确?最后,一旦分析完成,如何确保结果可重现,以便其他人进行审查和研究?

在发表于《基因组生物学》的一篇文章中,杰里米·戈克斯(Jeremy Goecks)、安东尼·内克伦科(Anton Nekrutenko)、詹姆斯·泰勒(James Taylor)和 Galaxy 团队的其他成员(Goecks 等人,1)解决了这些关键问题,发布了 Galaxy 项目的最新更新。Galaxy 的雄心壮志是让普通用户在无需成为计算生物学或计算机科学专家的情况下,自行进行计算分析。Galaxy 为基因组学研究添加了急需的图形用户界面,使数据分析在网络浏览器中普遍可用,并使用户摆脱陈旧的命令行参数、数据格式和脚本语言的繁琐细节。数据输入和计算步骤从动态图形菜单中选择,结果以直观的图表和摘要形式显示,鼓励交互式工作流程和假设探索。基础数据分析工具可以是任何语言编写的任何软件,但它们的所有复杂性都巧妙地隐藏在 Galaxy 内部,使用户能够专注于科学问题而不是技术问题。

相似文献

1
The missing graphical user interface for genomics.
Genome Biol. 2010;11(8):128. doi: 10.1186/gb-2010-11-8-128. Epub 2010 Aug 25.
2
Galactic Circos: User-friendly Circos plots within the Galaxy platform.
Gigascience. 2020 Jun 1;9(6). doi: 10.1093/gigascience/giaa065.
3
PanWeb: A web interface for pan-genomic analysis.
PLoS One. 2017 May 24;12(5):e0178154. doi: 10.1371/journal.pone.0178154. eCollection 2017.
4
Making whole genome multiple alignments usable for biologists.
Bioinformatics. 2011 Sep 1;27(17):2426-8. doi: 10.1093/bioinformatics/btr398. Epub 2011 Jul 19.
6
BioBlend.objects: metacomputing with Galaxy.
Bioinformatics. 2014 Oct;30(19):2816-7. doi: 10.1093/bioinformatics/btu386. Epub 2014 Jun 12.
7
MBEToolbox: a MATLAB toolbox for sequence data analysis in molecular biology and evolution.
BMC Bioinformatics. 2005 Mar 22;6:64. doi: 10.1186/1471-2105-6-64.
8
VisRseq: R-based visual framework for analysis of sequencing data.
BMC Bioinformatics. 2015;16 Suppl 11(Suppl 11):S2. doi: 10.1186/1471-2105-16-S11-S2. Epub 2015 Aug 13.
9
DolphinNext: a distributed data processing platform for high throughput genomics.
BMC Genomics. 2020 Apr 19;21(1):310. doi: 10.1186/s12864-020-6714-x.
10
G-OnRamp: Generating genome browsers to facilitate undergraduate-driven collaborative genome annotation.
PLoS Comput Biol. 2020 Jun 4;16(6):e1007863. doi: 10.1371/journal.pcbi.1007863. eCollection 2020 Jun.

引用本文的文献

1
A simple guide to de novo transcriptome assembly and annotation.
Brief Bioinform. 2022 Mar 10;23(2). doi: 10.1093/bib/bbab563.
2
Will Digital Pathology be as Disruptive as Genomics?
J Pathol Inform. 2018 Jul 19;9:27. doi: 10.4103/jpi.jpi_25_18. eCollection 2018.
4
Next generation sequence analysis and computational genomics using graphical pipeline workflows.
Genes (Basel). 2012 Aug 30;3(3):545-75. doi: 10.3390/genes3030545.
6
Microarrays, deep sequencing and the true measure of the transcriptome.
BMC Biol. 2011 May 31;9:34. doi: 10.1186/1741-7007-9-34.
7
Multi-scale genetic dynamic modelling I : an algorithm to compute generators.
Theory Biosci. 2011 Sep;130(3):165-82. doi: 10.1007/s12064-011-0125-0. Epub 2011 Apr 13.

本文引用的文献

2
Manipulation of FASTQ data with Galaxy.
Bioinformatics. 2010 Jul 15;26(14):1783-5. doi: 10.1093/bioinformatics/btq281. Epub 2010 Jun 18.
3
Altered histone acetylation is associated with age-dependent memory impairment in mice.
Science. 2010 May 7;328(5979):753-6. doi: 10.1126/science.1186088.
4
A map of open chromatin in human pancreatic islets.
Nat Genet. 2010 Mar;42(3):255-9. doi: 10.1038/ng.530. Epub 2010 Jan 31.
5
Windshield splatter analysis with the Galaxy metagenomic pipeline.
Genome Res. 2009 Nov;19(11):2144-53. doi: 10.1101/gr.094508.109. Epub 2009 Oct 9.
6
The Sequence Alignment/Map format and SAMtools.
Bioinformatics. 2009 Aug 15;25(16):2078-9. doi: 10.1093/bioinformatics/btp352. Epub 2009 Jun 8.
7
Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics. 2009 Jul 15;25(14):1754-60. doi: 10.1093/bioinformatics/btp324. Epub 2009 May 18.
8
Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol. 2009;10(3):R25. doi: 10.1186/gb-2009-10-3-r25. Epub 2009 Mar 4.
9
Bioconductor: open software development for computational biology and bioinformatics.
Genome Biol. 2004;5(10):R80. doi: 10.1186/gb-2004-5-10-r80. Epub 2004 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验