Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India.
J Biol Chem. 2010 Dec 3;285(49):37964-75. doi: 10.1074/jbc.M110.155317. Epub 2010 Sep 13.
Using a pharmacological inhibitor of Hsp90 in cultured malarial parasite, we have previously implicated Plasmodium falciparum Hsp90 (PfHsp90) as a drug target against malaria. In this study, we have biochemically characterized PfHsp90 in terms of its ATPase activity and interaction with its inhibitor geldanamycin (GA) and evaluated its potential as a drug target in a preclinical mouse model of malaria. In addition, we have explored the potential of Hsp90 inhibitors as drugs for the treatment of Trypanosoma infection in animals. Our studies with full-length PfHsp90 showed it to have the highest ATPase activity of all known Hsp90s; its ATPase activity was 6 times higher than that of human Hsp90. Also, GA brought about more robust inhibition of PfHsp90 ATPase activity as compared with human Hsp90. Mass spectrometric analysis of PfHsp90 expressed in P. falciparum identified a site of acetylation that overlapped with Aha1 and p23 binding domain, suggesting its role in modulating Hsp90 multichaperone complex assembly. Indeed, treatment of P. falciparum cultures with a histone deacetylase inhibitor resulted in a partial dissociation of PfHsp90 complex. Furthermore, we found a well known, semisynthetic Hsp90 inhibitor, namely 17-(allylamino)-17-demethoxygeldanamycin, to be effective in attenuating parasite growth and prolonging survival in a mouse model of malaria. We also characterized GA binding to Hsp90 from another protozoan parasite, namely Trypanosoma evansi. We found 17-(allylamino)-17-demethoxygeldanamycin to potently inhibit T. evansi growth in a mouse model of trypanosomiasis. In all, our biochemical characterization, drug interaction, and animal studies supported Hsp90 as a drug target and its inhibitor as a potential drug against protozoan diseases.
利用一种热休克蛋白 90(Hsp90)的药理学抑制剂,我们之前曾将恶性疟原虫 Hsp90(PfHsp90)作为抗疟疾药物靶点。在这项研究中,我们从 ATP 酶活性和与抑制剂格尔德霉素(GA)的相互作用方面对 PfHsp90 进行了生化特征分析,并在疟疾的临床前小鼠模型中评估了其作为药物靶点的潜力。此外,我们还探索了 Hsp90 抑制剂作为治疗动物中感染的药物的潜力。我们对全长 PfHsp90 的研究表明,它具有所有已知 Hsp90 中最高的 ATP 酶活性;其 ATP 酶活性比人 Hsp90 高 6 倍。此外,GA 引起的 PfHsp90 ATP 酶活性抑制比人 Hsp90 更强烈。在恶性疟原虫中表达的 PfHsp90 的质谱分析确定了一个与 Aha1 和 p23 结合域重叠的乙酰化位点,这表明它在调节 Hsp90 多伴侣复合物组装中发挥作用。事实上,用组蛋白去乙酰化酶抑制剂处理疟原虫培养物导致 PfHsp90 复合物的部分解离。此外,我们发现一种众所周知的半合成 Hsp90 抑制剂,即 17-(烯丙基氨基)-17-去甲氧基格尔德霉素,可有效抑制疟原虫生长并延长疟疾小鼠模型的存活时间。我们还对另一种原生动物寄生虫即伊氏锥虫的 Hsp90 与 GA 的结合进行了表征。我们发现 17-(烯丙基氨基)-17-去甲氧基格尔德霉素可有效地抑制锥虫病的小鼠模型中的 T. evansi 生长。总之,我们的生化特征分析、药物相互作用和动物研究均支持 Hsp90 作为药物靶点及其抑制剂作为针对原生动物疾病的潜在药物。