Suppr超能文献

Cdc13 N 端二聚化、DNA 结合和端粒长度调控。

Cdc13 N-terminal dimerization, DNA binding, and telomere length regulation.

机构信息

The Wistar Institute, 3601 Spruce St., Philadelphia, PA 19104, USA.

出版信息

Mol Cell Biol. 2010 Nov;30(22):5325-34. doi: 10.1128/MCB.00515-10. Epub 2010 Sep 13.

Abstract

The essential yeast protein Cdc13 facilitates chromosome end replication by recruiting telomerase to telomeres, and together with its interacting partners Stn1 and Ten1, it protects chromosome ends from nucleolytic attack, thus contributing to genome integrity. Although Cdc13 has been studied extensively, the precise role of its N-terminal domain (Cdc13N) in telomere length regulation remains unclear. Here we present a structural, biochemical, and functional characterization of Cdc13N. The structure reveals that this domain comprises an oligonucleotide/oligosaccharide binding (OB) fold and is involved in Cdc13 dimerization. Biochemical data show that Cdc13N weakly binds long, single-stranded, telomeric DNA in a fashion that is directly dependent on domain oligomerization. When introduced into full-length Cdc13 in vivo, point mutations that prevented Cdc13N dimerization or DNA binding caused telomere shortening or lengthening, respectively. The multiple DNA binding domains and dimeric nature of Cdc13 offer unique insights into how it coordinates the recruitment and regulation of telomerase access to the telomeres.

摘要

酵母必需蛋白 Cdc13 通过将端粒酶招募到端粒上来促进染色体末端复制,它与相互作用的伙伴 Stn1 和 Ten1 一起,保护染色体末端免受核酶攻击,从而有助于基因组完整性。尽管 Cdc13 已经被广泛研究,但它的 N 端结构域(Cdc13N)在端粒长度调节中的精确作用仍不清楚。在这里,我们对 Cdc13N 进行了结构、生化和功能表征。结构揭示了该结构域包含一个寡核苷酸/寡糖结合(OB)折叠,并且参与 Cdc13 二聚化。生化数据表明,Cdc13N 以一种直接依赖于结构域寡聚化的方式,弱结合长的、单链的、端粒 DNA。当在体内引入全长 Cdc13 时,阻止 Cdc13N 二聚化或 DNA 结合的点突变分别导致端粒缩短或延长。Cdc13 的多个 DNA 结合结构域和二聚体性质为其如何协调端粒酶对端粒的招募和调节提供了独特的见解。

相似文献

1
Cdc13 N-terminal dimerization, DNA binding, and telomere length regulation.
Mol Cell Biol. 2010 Nov;30(22):5325-34. doi: 10.1128/MCB.00515-10. Epub 2010 Sep 13.
2
Cdc13 OB2 dimerization required for productive Stn1 binding and efficient telomere maintenance.
Structure. 2013 Jan 8;21(1):109-120. doi: 10.1016/j.str.2012.10.012. Epub 2012 Nov 21.
4
Dynamic DNA Shortening by Telomere-Binding Protein Cdc13.
J Am Chem Soc. 2021 Apr 21;143(15):5815-5825. doi: 10.1021/jacs.1c00820. Epub 2021 Apr 8.
5
The tenacious recognition of yeast telomere sequence by Cdc13 is fully exerted by a single OB-fold domain.
Nucleic Acids Res. 2014 Jan;42(1):475-84. doi: 10.1093/nar/gkt843. Epub 2013 Sep 20.
6
TEN1 is essential for CDC13-mediated telomere capping.
Genetics. 2009 Nov;183(3):793-810. doi: 10.1534/genetics.109.108894. Epub 2009 Sep 14.
7
Distinct roles for yeast Stn1 in telomere capping and telomerase inhibition.
EMBO J. 2008 Sep 3;27(17):2328-39. doi: 10.1038/emboj.2008.158.
8
Sequence-specific binding to telomeric DNA is not a conserved property of the Cdc13 DNA binding domain.
Biochemistry. 2011 Jul 26;50(29):6289-91. doi: 10.1021/bi2005448. Epub 2011 Jun 29.
9
RPA-like proteins mediate yeast telomere function.
Nat Struct Mol Biol. 2007 Mar;14(3):208-14. doi: 10.1038/nsmb1205. Epub 2007 Feb 11.

引用本文的文献

1
Dimerization of Cdc13 is essential for dynamic DNA exchange on telomeric DNA.
J Biol Chem. 2025 Jul 17;301(8):110496. doi: 10.1016/j.jbc.2025.110496.
2
Dimerization of Cdc13 is essential for dynamic DNA exchange on telomeric DNA.
bioRxiv. 2025 Mar 26:2025.03.25.645294. doi: 10.1101/2025.03.25.645294.
3
Cdc13 exhibits dynamic DNA strand exchange in the presence of telomeric DNA.
Nucleic Acids Res. 2024 Jun 24;52(11):6317-6332. doi: 10.1093/nar/gkae265.
4
RPA-like single-stranded DNA-binding protein complexes including CST serve as specialized processivity factors for polymerases.
Curr Opin Struct Biol. 2023 Aug;81:102611. doi: 10.1016/j.sbi.2023.102611. Epub 2023 May 26.
6
Telomeres and Cancer.
Life (Basel). 2021 Dec 16;11(12):1405. doi: 10.3390/life11121405.
7
Structural insights into telomere protection and homeostasis regulation by yeast CST complex.
Nat Struct Mol Biol. 2020 Aug;27(8):752-762. doi: 10.1038/s41594-020-0459-8. Epub 2020 Jul 13.
8
The Telomeric Cdc13 Protein from Yeast Hansenula polymorpha.
Acta Naturae. 2020 Jan-Mar;12(1):84-88. doi: 10.32607/actanaturae.10944.
9
Fine tuning the level of the Cdc13 telomere-capping protein for maximal chromosome stability performance.
Curr Genet. 2019 Feb;65(1):109-118. doi: 10.1007/s00294-018-0871-3. Epub 2018 Jul 31.
10
Nuclear import of Cdc13 limits chromosomal capping.
Nucleic Acids Res. 2018 Apr 6;46(6):2975-2989. doi: 10.1093/nar/gky085.

本文引用的文献

1
Telomere capping proteins are structurally related to RPA with an additional telomere-specific domain.
Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19298-303. doi: 10.1073/pnas.0909203106. Epub 2009 Nov 2.
4
The CST complex and telomere maintenance: the exception becomes the rule.
Mol Cell. 2009 Oct 23;36(2):168-9. doi: 10.1016/j.molcel.2009.10.001.
5
The conserved Est1 protein stimulates telomerase DNA extension activity.
Proc Natl Acad Sci U S A. 2009 Oct 13;106(41):17337-42. doi: 10.1073/pnas.0905703106. Epub 2009 Sep 24.
6
TEN1 is essential for CDC13-mediated telomere capping.
Genetics. 2009 Nov;183(3):793-810. doi: 10.1534/genetics.109.108894. Epub 2009 Sep 14.
7
The Hsp82 molecular chaperone promotes a switch between unextendable and extendable telomere states.
Nat Struct Mol Biol. 2009 Jul;16(7):711-6. doi: 10.1038/nsmb.1616. Epub 2009 Jun 14.
9
Searching protein structure databases with DaliLite v.3.
Bioinformatics. 2008 Dec 1;24(23):2780-1. doi: 10.1093/bioinformatics/btn507. Epub 2008 Sep 25.
10
Structure of the Tribolium castaneum telomerase catalytic subunit TERT.
Nature. 2008 Oct 2;455(7213):633-7. doi: 10.1038/nature07283. Epub 2008 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验