Suppr超能文献

对大肠杆菌 K1 外膜蛋白 A 与人脑微血管内皮细胞预测结合位点的实验验证:鉴定阻止大肠杆菌脑膜炎的关键突变。

Experimental validation of the predicted binding site of Escherichia coli K1 outer membrane protein A to human brain microvascular endothelial cells: identification of critical mutations that prevent E. coli meningitis.

机构信息

From the Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125.

出版信息

J Biol Chem. 2010 Nov 26;285(48):37753-61. doi: 10.1074/jbc.M110.122804. Epub 2010 Sep 17.

Abstract

Escherichia coli K1, the most common cause of meningitis in neonates, has been shown to interact with GlcNAc1-4GlcNAc epitopes of Ecgp96 on human brain microvascular endothelial cells (HBMECs) via OmpA (outer membrane protein A). However, the precise domains of extracellular loops of OmpA interacting with the chitobiose epitopes have not been elucidated. We report the loop-barrel model of these OmpA interactions with the carbohydrate moieties of Ecgp96 predicted from molecular modeling. To test this model experimentally, we generated E. coli K1 strains expressing OmpA with mutations of residues predicted to be critical for interaction with the HBMEC and tested E. coli invasion efficiency. For these same mutations, we predicted the interaction free energies (including explicit calculation of the entropy) from molecular dynamics (MD), finding excellent correlation (R(2) = 90%) with experimental invasion efficiency. Particularly important is that mutating specific residues in loops 1, 2, and 4 to alanines resulted in significant inhibition of E. coli K1 invasion in HBMECs, which is consistent with the complete lack of binding found in the MD simulations for these two cases. These studies suggest that inhibition of the interactions of these residues of Loop 1, 2, and 4 with Ecgp96 could provide a therapeutic strategy to prevent neonatal meningitis due to E. coli K1.

摘要

大肠杆菌 K1 是新生儿脑膜炎最常见的病因,已被证明通过 OmpA(外膜蛋白 A)与人脑微血管内皮细胞(HBMEC)上的 Ecgp96 的 GlcNAc1-4GlcNAc 表位相互作用。然而,与壳二糖表位相互作用的 OmpA 胞外环的精确结构域尚未阐明。我们从分子建模中预测了这些 OmpA 与 Ecgp96 碳水化合物部分相互作用的环桶模型。为了通过实验检验该模型,我们生成了表达 OmpA 突变体的大肠杆菌 K1 菌株,这些突变体的残基被预测为与 HBMEC 相互作用的关键残基,并测试了大肠杆菌的侵袭效率。对于这些相同的突变,我们从分子动力学(MD)预测了相互作用的自由能(包括对熵的显式计算),发现与实验侵袭效率有极好的相关性(R²=90%)。特别重要的是,将 loop1、2 和 4 中的特定残基突变为丙氨酸会导致大肠杆菌 K1 在 HBMEC 中的侵袭显著抑制,这与 MD 模拟中这两种情况下完全没有结合一致。这些研究表明,抑制 Loop 1、2 和 4 中这些残基与 Ecgp96 的相互作用可能为预防因大肠杆菌 K1 引起的新生儿脑膜炎提供一种治疗策略。

相似文献

4
Escherichia coli outer membrane protein A adheres to human brain microvascular endothelial cells.
Biochem Biophys Res Commun. 2005 May 20;330(4):1199-204. doi: 10.1016/j.bbrc.2005.03.097.
5
Cloning and expression of the Escherichia coli K1 outer membrane protein A receptor, a gp96 homologue.
Infect Immun. 2003 Apr;71(4):1680-8. doi: 10.1128/IAI.71.4.1680-1688.2003.
9
IbeA and OmpA of Escherichia coli K1 exploit Rac1 activation for invasion of human brain microvascular endothelial cells.
Infect Immun. 2012 Jun;80(6):2035-41. doi: 10.1128/IAI.06320-11. Epub 2012 Mar 26.

引用本文的文献

1
Biomimetic Lipopolysaccharide-Free Bacterial Outer Membrane-Functionalized Nanoparticles for Brain-Targeted Drug Delivery.
Adv Sci (Weinh). 2022 May;9(16):e2105854. doi: 10.1002/advs.202105854. Epub 2022 Mar 31.
3
Combating virulence of Gram-negative bacilli by OmpA inhibition.
Sci Rep. 2017 Oct 31;7(1):14683. doi: 10.1038/s41598-017-14972-y.
4
Key residues of S. flexneri OmpA mediate infection by bacteriophage Sf6.
J Mol Biol. 2015 May 22;427(10):1964-76. doi: 10.1016/j.jmb.2015.03.012. Epub 2015 Mar 24.
7
9
Outer membrane protein A and OprF: versatile roles in Gram-negative bacterial infections.
FEBS J. 2012 Mar;279(6):919-31. doi: 10.1111/j.1742-4658.2012.08482.x. Epub 2012 Feb 10.

本文引用的文献

1
Flat-Bottom Strategy for Improved Accuracy in Protein Side-Chain Placements.
J Chem Theory Comput. 2008 Dec 9;4(12):2160-9. doi: 10.1021/ct800196k.
2
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
4
Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types.
J Phys Chem B. 2010 Jun 17;114(23):7830-43. doi: 10.1021/jp101759q.
5
CHARMM Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses.
J Chem Theory Comput. 2009 Aug 20;5(9):2353-2370. doi: 10.1021/ct900242e.
6
Predicted 3D structures for adenosine receptors bound to ligands: comparison to the crystal structure.
J Struct Biol. 2010 Apr;170(1):10-20. doi: 10.1016/j.jsb.2010.01.001. Epub 2010 Jan 15.
7
CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes.
Biophys J. 2009 Jul 8;97(1):50-8. doi: 10.1016/j.bpj.2009.04.013.
8
Additive empirical force field for hexopyranose monosaccharides.
J Comput Chem. 2008 Nov 30;29(15):2543-64. doi: 10.1002/jcc.21004.
10
Adaptive mutations in bacteria: high rate and small effects.
Science. 2007 Aug 10;317(5839):813-5. doi: 10.1126/science.1142284.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验