Suppr超能文献

探寻软骨再生的 elusive 之路。

The elusive path to cartilage regeneration.

出版信息

Adv Mater. 2009 Sep 4;21(32-33):3419-24. doi: 10.1002/adma.200801957.

Abstract

Numerous attempts have been made to develop an efficacious strategy for the repair of articular cartilage. These endeavours have been undaunted, if not spurred, by the challenge of the task and by the largely disappointing outcomes in animal models. Of the strategies that have been lately applied in a clinical setting, the autologous-chondrocyte-transplantation technique is the most notorious example. This methodology, which was prematurely launched on the clinical scene, was greeted with enthusiasm and has been widely adopted. However, a recent prospective and randomized clinical trial has revealed the approach to confer no advantage over conventional microfracturing. Why is the repair of articular cartilage such a seemingly intractable problem? The root of the evil undoubtedly lies in the tissue's poor intrinsic healing capacity. But the failure of investigators to tackle the biological stumbling blocks systematically rather than empirically is hardly a less inauspicious circumstance. Moreover, it is a common misbelief that the formation of hyaline cartilage suffices, whereas to be durable and functionally competent, the tissue must be fully mature. An appreciation of this necessity, coupled with a thorough understanding of the postnatal development of articular cartilage, would help to steer investigators clear of biological cul-de-sacs.

摘要

人们尝试了多种方法来开发有效的策略,以修复关节软骨。尽管这项任务极具挑战性,动物模型的结果也大多令人失望,但这些努力仍在继续。在最近应用于临床的策略中,自体软骨细胞移植技术是最著名的例子。这种方法在临床中过早推出,虽然受到了欢迎,但也被广泛采用。然而,最近一项前瞻性和随机临床试验表明,该方法并没有优于传统的微骨折。为什么修复关节软骨似乎是一个如此棘手的问题?毫无疑问,问题的根源在于组织本身的愈合能力差。但是,研究人员没有系统地而不是凭经验解决生物学障碍,这并不是一个不太不利的情况。此外,人们普遍存在一种误解,认为形成透明软骨就足够了,而要持久和具有功能,组织必须完全成熟。认识到这一必要性,并充分了解关节软骨的产后发育,将有助于研究人员避免生物学上的死胡同。

相似文献

1
The elusive path to cartilage regeneration.
Adv Mater. 2009 Sep 4;21(32-33):3419-24. doi: 10.1002/adma.200801957.
2
Advanced collagen-based scaffolds for cartilage and osteochondral regeneration: A review.
Int J Biol Macromol. 2025 Jun;311(Pt 4):143992. doi: 10.1016/j.ijbiomac.2025.143992. Epub 2025 May 8.
3
Unlike bone, cartilage regeneration remains elusive.
Science. 2012 Nov 16;338(6109):917-21. doi: 10.1126/science.1222454.
4
Dominant Role of Distinct Microenvironments on Cartilage Regeneration Fate Using PLGA-Hydrogel Composite Scaffolds.
Adv Healthc Mater. 2025 May;14(12):e2405272. doi: 10.1002/adhm.202405272. Epub 2025 Mar 27.
5
A Comprehensive Review of Stem Cells for Cartilage Regeneration in Osteoarthritis.
Adv Exp Med Biol. 2018;1089:23-36. doi: 10.1007/5584_2018_205.
6
Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration.
Acta Biomater. 2018 Sep 1;77:127-141. doi: 10.1016/j.actbio.2018.07.031. Epub 2018 Jul 18.
7
Systematic Review of Human Dental Pulp Stem Cells for Cartilage Regeneration.
Tissue Eng Part B Rev. 2020 Feb;26(1):1-12. doi: 10.1089/ten.TEB.2019.0140. Epub 2020 Jan 22.
8
Strategies for improving the repair of focal cartilage defects.
Nanomedicine (Lond). 2015;10(18):2893-905. doi: 10.2217/nnm.15.119. Epub 2015 Sep 7.
10
Development of bioactive solid-foam scaffolds from decellularized cartilage with chondrogenic and osteogenic properties.
Mater Today Bio. 2024 Sep 3;28:101228. doi: 10.1016/j.mtbio.2024.101228. eCollection 2024 Oct.

引用本文的文献

1
BMP9 induces postnatal zonal stratification of immature articular cartilage through reconfiguration of the existing collagen framework.
Front Cell Dev Biol. 2025 Jan 28;12:1511908. doi: 10.3389/fcell.2024.1511908. eCollection 2024.
3
Subchondral bone: An emerging target for the treatment of articular surface lesions of the knee.
J Exp Orthop. 2024 Jul 21;11(3):e12098. doi: 10.1002/jeo2.12098. eCollection 2024 Jul.
4
Advances in the Treatment of Partial-Thickness Cartilage Defect.
Int J Nanomedicine. 2022 Dec 13;17:6275-6287. doi: 10.2147/IJN.S382737. eCollection 2022.
5
Articular Cartilage Chondroprogenitors: Isolation and Directed Differentiation.
Methods Mol Biol. 2023;2598:29-44. doi: 10.1007/978-1-0716-2839-3_4.
6
Navigating regulatory pathways for translation of biologic cartilage repair products.
Sci Transl Med. 2022 Aug 24;14(659):eabp8163. doi: 10.1126/scitranslmed.abp8163.
8
Molecular Insights Into Lysyl Oxidases in Cartilage Regeneration and Rejuvenation.
Front Bioeng Biotechnol. 2020 Apr 30;8:359. doi: 10.3389/fbioe.2020.00359. eCollection 2020.
9
Surgical osteochondral defect repair in the horse-a matter of form or function?
Equine Vet J. 2020 Jul;52(4):489-499. doi: 10.1111/evj.13231. Epub 2020 Feb 19.

本文引用的文献

1
Novel porous matrix of hyaluronic acid for the three-dimensional culture of chondrocytes.
Int J Pharm. 2009 Mar 18;369(1-2):114-20. doi: 10.1016/j.ijpharm.2008.11.008. Epub 2008 Nov 20.
2
Clinical application of scaffolds for cartilage tissue engineering.
Knee Surg Sports Traumatol Arthrosc. 2009 Jun;17(6):561-77. doi: 10.1007/s00167-008-0663-2. Epub 2008 Nov 20.
3
Minced articular cartilage--basic science, surgical technique, and clinical application.
Sports Med Arthrosc Rev. 2008 Dec;16(4):217-20. doi: 10.1097/JSA.0b013e31818e0e4a.
4
Cartilage repair: synthetics and scaffolds: basic science, surgical techniques, and clinical outcomes.
Sports Med Arthrosc Rev. 2008 Dec;16(4):208-16. doi: 10.1097/JSA.0b013e31818cdbaa.
6
Bilayered scaffolds for osteochondral tissue engineering.
Tissue Eng Part B Rev. 2008 Dec;14(4):447-64. doi: 10.1089/ten.teb.2008.0327.
9
In vivo maturation of scaffold-free engineered articular cartilage on hydroxyapatite.
Tissue Eng Part A. 2008 Nov;14(11):1905-13. doi: 10.1089/ten.tea.2006.0419.
10
Fibrin: a versatile scaffold for tissue engineering applications.
Tissue Eng Part B Rev. 2008 Jun;14(2):199-215. doi: 10.1089/ten.teb.2007.0435.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验