Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva S/N, 18071 Granada, Spain.
Inorg Chem. 2010 Nov 1;49(21):10156-65. doi: 10.1021/ic101435b.
The syntheses, crystal structures, and the experimental and theoretical magnetochemical characterization for three tetrametallic Ni(II) clusters, namely, Ni(4)(L)(4)(Cl)(2)(MeOH)(2)(2)·4MeOH (1), Ni(4)(L)(4)(N(3))(2)(MeOH)(2)(2)·2MeOH (2), and Ni(4)(L1)(4)(pyz)(2)(PhCOO)(2)(MeOH)(2)(2)·7MeOH (3) (where HL and HL1 represent bipyridine-2-carboxamideoxime and pyrimidine-2-carboxamideoxime, respectively) are reported. Within the Ni(4)(2+) units of these compounds, distorted octahedral Ni(II) ions are bridged by carboxamideoximato ligands to adopt a distorted tetrahedral disposition. The Ni(4)(2+) unit, of C(2) symmetry, can also be viewed as a cube with single [O-atom] and double [NO oxime] bridging groups as atom edges, which define two almost square-planar Ni(O)(2)Ni rings and four irregular hexagonal Ni(NO)(2)Ni rings. To analyze the magnetic properties of 1-3, we have considered the simplest two-J model, where J(1) = J(2) (exchange interactions between the Ni(II) ions belonging to the Ni(O)(2)Ni square rings) and J(a) = J(b) = J(c) = J(d) (exchange interactions between the Ni(II) ions belonging to the Ni-(NO)(2)Ni hexagonal rings) with the Hamiltonian H = -J(1)(S(1)S(2) + S(3)S(4)) - J(a)(S(1)S(3) + S(1)S(4) + S(2)S(3) + S(2)S(4)). The J(1) and J(a) values derived from the fitting of the experimental susceptibility data are -5.8 cm(-1) and -22.1 cm(-1) for 1; -2.4 cm(-1) and -22.8 cm(-1) for 2, and +15.6 cm(-1) and -10.8 cm(-1) for 3. The magneto-structural results and density-functional theory (DFT) calculations demonstrate that the exchange interactions inside the Ni(μ-O)(2)Ni square rings depend on the Ni-O-Ni bridging angle (θ) and the out-of-plane angle of the NO oximate bridging group with respect to the Ni(O)(2)Ni plane (τ), whereas the interactions propagated through the Ni-N-O(Ni)-Ni exchange pathways defining the side of the hexagonal rings depend on the Ni-N-O-Ni torsion angle (α). In both cases, theoretical magneto-structural correlations were obtained, which allow the prediction of the angle for which ferromagnetic interactions are expected. For compound 3, the existence of the axial magnetic exchange pathway through the syn-syn benzoate bridge may also contribute (in addition to the θ and τ angles) to the observed F interaction in this compound through orbital countercomplementarity, which has been supported by DFT calculations. Finally, DFT calculations clearly show that the antiferromagnetic exchange increases when the dihedral angle between the O-Ni-O planes of the Ni(μ-O)(2)Ni square ring, β, increases.
报告了三个四金属镍(II)簇合物,即[Ni(4)(L)(4)(Cl)(2)(MeOH)(2)](ClO(4))(2)·4MeOH(1),[Ni(4)(L)(4)(N(3))(2)(MeOH)(2)](ClO(4))(2)·2MeOH(2)和[Ni(4)(L1)(4)(pyz)(2)(PhCOO)(2)(MeOH)(2)](ClO(4))(2)·7MeOH(3)(其中HL 和 HL1 分别代表联吡啶-2-羧酰胺肟和嘧啶-2-羧酰胺肟)的合成、晶体结构以及实验和理论磁化学特性。在这些化合物的 Ni(4)(2+)单元中,扭曲的八面体 Ni(II)离子通过羧酰胺肟配体桥接,采用扭曲的四面体形配置。Ni(4)(2+)单元,具有 C2 对称性,也可以看作是一个立方体,具有单个[O-原子]和双[NO 肟]桥接基团作为原子边缘,定义了两个几乎正方形平面的 Ni(O)(2)Ni 环和四个不规则六边形 Ni(NO)(2)Ni 环。为了分析 1-3 的磁性能,我们考虑了最简单的双 J 模型,其中 J(1)= J(2)(属于 Ni(O)(2)Ni 正方形环的 Ni(II)离子之间的交换相互作用)和 J(a)= J(b)= J(c)= J(d)(属于 Ni(NO)(2)Ni 六边形环的 Ni(II)离子之间的交换相互作用),哈密顿量 H = -J(1)(S(1)S(2)+ S(3)S(4))- J(a)(S(1)S(3)+ S(1)S(4)+ S(2)S(3)+ S(2)S(4))。从实验磁化率数据拟合得出的 J(1)和 J(a)值分别为 1 为-5.8 cm(-1)和-22.1 cm(-1);2 为-2.4 cm(-1)和-22.8 cm(-1);3 为+15.6 cm(-1)和-10.8 cm(-1)。磁结构结果和密度泛函理论(DFT)计算表明,Ni(μ-O)(2)Ni 正方形环内的交换相互作用取决于 Ni-O-Ni 桥接角(θ)和 NO 肟桥接基团与 Ni(O)(2)Ni 平面的面外角(τ),而通过定义六边形环侧面的 Ni-N-O(Ni)-Ni 交换途径传播的相互作用取决于 Ni-N-O-Ni 扭转角(α)。在这两种情况下,都得到了理论磁结构相关性,这允许预测预期铁磁相互作用的角度。对于化合物 3,通过 syn-syn 苯甲酸桥的轴向磁交换途径的存在(除了θ和τ角之外)也可能通过轨道互补性(这得到了 DFT 计算的支持)有助于该化合物中观察到的 F 相互作用。最后,DFT 计算清楚地表明,当 Ni(μ-O)(2)Ni 正方形环的 O-Ni-O 平面之间的二面角β增加时,反铁磁交换增加。