Suppr超能文献

梨状皮层中的锥体细胞从不同的嗅球小球接收会聚输入。

Pyramidal cells in piriform cortex receive convergent input from distinct olfactory bulb glomeruli.

机构信息

Center for Neural Circuits and Behavior, Neuroscience Department, School of Medicine, Neurobiology Section, Division of Biology, and Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093-0634, USA.

出版信息

J Neurosci. 2010 Oct 20;30(42):14255-60. doi: 10.1523/JNEUROSCI.2747-10.2010.

Abstract

Pyramidal cells in piriform cortex integrate sensory information from multiple olfactory bulb mitral and tufted (M/T) cells. However, whether M/T cells belonging to different olfactory bulb glomeruli converge onto individual cortical cells is unclear. Here we use calcium imaging in an olfactory bulb-cortex slice preparation to provide direct evidence that neurons in piriform cortex receive convergent synaptic input from different glomeruli. We show that the combined activity of distinct glomerular pathways recruits ensembles of pyramidal cells that are not activated by the individual pathways alone. This cooperative recruitment of cortical neurons only occurs over a narrow time window and is a feature intrinsic to the olfactory cortex that can be explained by the integration of converging, subthreshold synaptic input. Cooperative recruitment enhances the differences between cortical representations of partially overlapping input patterns and may contribute to the initial steps of olfactory discrimination.

摘要

梨状皮层中的锥体细胞整合来自多个嗅球僧帽和丛(M/T)细胞的感觉信息。然而,不同嗅球肾小球的 M/T 细胞是否会聚到单个皮质细胞尚不清楚。在这里,我们使用嗅球-皮层切片制备中的钙成像来提供直接证据,证明梨状皮层中的神经元接收来自不同肾小球的会聚突触输入。我们表明,不同肾小球通路的组合活动募集了单独通路无法激活的锥体细胞集合。这种皮质神经元的协作募集仅发生在一个狭窄的时间窗口内,是嗅皮层的固有特征,可以通过会聚的、亚阈值突触输入的整合来解释。协作募集增强了部分重叠输入模式在皮质表示中的差异,可能有助于嗅觉辨别过程的初始步骤。

相似文献

1
Pyramidal cells in piriform cortex receive convergent input from distinct olfactory bulb glomeruli.
J Neurosci. 2010 Oct 20;30(42):14255-60. doi: 10.1523/JNEUROSCI.2747-10.2010.
2
Cortical feedback control of olfactory bulb circuits.
Neuron. 2012 Dec 20;76(6):1161-74. doi: 10.1016/j.neuron.2012.10.020.
3
Membrane and synaptic properties of pyramidal neurons in the anterior olfactory nucleus.
J Neurophysiol. 2011 Apr;105(4):1444-53. doi: 10.1152/jn.00715.2010. Epub 2010 Dec 1.
4
Task-Demand-Dependent Neural Representation of Odor Information in the Olfactory Bulb and Posterior Piriform Cortex.
J Neurosci. 2019 Dec 11;39(50):10002-10018. doi: 10.1523/JNEUROSCI.1234-19.2019. Epub 2019 Oct 31.
5
Synaptic Organization of Anterior Olfactory Nucleus Inputs to Piriform Cortex.
J Neurosci. 2020 Dec 2;40(49):9414-9425. doi: 10.1523/JNEUROSCI.0965-20.2020. Epub 2020 Oct 28.
6
Cortical representations of olfactory input by trans-synaptic tracing.
Nature. 2011 Apr 14;472(7342):191-6. doi: 10.1038/nature09714. Epub 2010 Dec 22.
7
External tufted cells drive the output of olfactory bulb glomeruli.
J Neurosci. 2009 Feb 18;29(7):2043-52. doi: 10.1523/JNEUROSCI.5317-08.2009.
8
The Interglomerular Circuit Potently Inhibits Olfactory Bulb Output Neurons by Both Direct and Indirect Pathways.
J Neurosci. 2016 Sep 14;36(37):9604-17. doi: 10.1523/JNEUROSCI.1763-16.2016.
9
CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb.
J Neurosci. 2020 Aug 5;40(32):6189-6206. doi: 10.1523/JNEUROSCI.0769-20.2020. Epub 2020 Jun 30.
10
Neural coding by two classes of principal cells in the mouse piriform cortex.
J Neurosci. 2006 Nov 15;26(46):11938-47. doi: 10.1523/JNEUROSCI.3473-06.2006.

引用本文的文献

1
Manifold learning for olfactory habituation to strongly fluctuating backgrounds.
bioRxiv. 2025 May 30:2025.05.26.656161. doi: 10.1101/2025.05.26.656161.
2
4
Common principles for odour coding across vertebrates and invertebrates.
Nat Rev Neurosci. 2024 Jul;25(7):453-472. doi: 10.1038/s41583-024-00822-0. Epub 2024 May 28.
6
Basal Forebrain Modulation of Olfactory Coding .
Int J Psychol Res (Medellin). 2023 Oct 10;16(2):62-86. doi: 10.21500/20112084.6486. eCollection 2023 Jul-Dec.
7
Olfactory neurogenesis and its role in fear memory modulation.
Front Behav Neurosci. 2023 Sep 28;17:1278324. doi: 10.3389/fnbeh.2023.1278324. eCollection 2023.
10
Olfactory bulb granule cells: specialized to link coactive glomerular columns for percept generation and discrimination of odors.
Cell Tissue Res. 2021 Jan;383(1):495-506. doi: 10.1007/s00441-020-03402-7. Epub 2021 Jan 6.

本文引用的文献

1
Properties of piriform cortex pyramidal cell dendrites: implications for olfactory circuit design.
J Neurosci. 2009 Oct 7;29(40):12641-52. doi: 10.1523/JNEUROSCI.1124-09.2009.
2
Representations of odor in the piriform cortex.
Neuron. 2009 Sep 24;63(6):854-64. doi: 10.1016/j.neuron.2009.09.005.
3
Odor representations in olfactory cortex: "sparse" coding, global inhibition, and oscillations.
Neuron. 2009 Jun 25;62(6):850-61. doi: 10.1016/j.neuron.2009.05.022.
4
Neural and behavioral mechanisms of olfactory perception.
Curr Opin Neurobiol. 2008 Aug;18(4):408-12. doi: 10.1016/j.conb.2008.08.015. Epub 2008 Oct 8.
5
Multiple modes of synaptic excitation of olfactory bulb granule cells.
J Neurosci. 2007 May 23;27(21):5621-32. doi: 10.1523/JNEUROSCI.4630-06.2007.
6
Sparse and selective odor coding by mitral/tufted neurons in the main olfactory bulb.
J Neurosci. 2007 Feb 21;27(8):2091-101. doi: 10.1523/JNEUROSCI.3779-06.2007.
7
Spatial and temporal distribution of odorant-evoked activity in the piriform cortex.
J Neurosci. 2007 Feb 14;27(7):1534-42. doi: 10.1523/JNEUROSCI.4072-06.2007.
8
Synaptic integration of olfactory information in mouse anterior olfactory nucleus.
J Neurosci. 2006 Nov 15;26(46):12023-32. doi: 10.1523/JNEUROSCI.2598-06.2006.
9
Early events in olfactory processing.
Annu Rev Neurosci. 2006;29:163-201. doi: 10.1146/annurev.neuro.29.051605.112950.
10
Combinatorial effects of odorant mixes in olfactory cortex.
Science. 2006 Mar 10;311(5766):1477-81. doi: 10.1126/science.1124755.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验