Suppr超能文献

胶质衍生生物活性神经鞘脂对阿片类镇痛药的反向调节作用。

Counter-regulation of opioid analgesia by glial-derived bioactive sphingolipids.

机构信息

Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA.

出版信息

J Neurosci. 2010 Nov 17;30(46):15400-8. doi: 10.1523/JNEUROSCI.2391-10.2010.

Abstract

The clinical efficacy of opiates for pain control is severely limited by analgesic tolerance and hyperalgesia. Herein we show that chronic morphine upregulates both the sphingolipid ceramide in spinal astrocytes and microglia, but not neurons, and spinal sphingosine-1-phosphate (S1P), the end-product of ceramide metabolism. Coadministering morphine with intrathecal administration of pharmacological inhibitors of ceramide and S1P blocked formation of spinal S1P and development of hyperalgesia and tolerance in rats. Our results show that spinally formed S1P signals at least in part by (1) modulating glial function because inhibiting S1P formation blocked increased formation of glial-related proinflammatory cytokines, in particular tumor necrosis factor-α, interleukin-1βα, and interleukin-6, which are known modulators of neuronal excitability, and (2) peroxynitrite-mediated posttranslational nitration and inactivation of glial-related enzymes (glutamine synthetase and the glutamate transporter) known to play critical roles in glutamate neurotransmission. Inhibitors of the ceramide metabolic pathway may have therapeutic potential as adjuncts to opiates in relieving suffering from chronic pain.

摘要

阿片类药物在控制疼痛方面的临床疗效受到镇痛耐受和痛觉过敏的严重限制。在此,我们表明慢性吗啡上调脊髓星形胶质细胞和小胶质细胞中的鞘脂神经酰胺,但不包括神经元,以及脊髓鞘氨醇-1-磷酸(S1P),这是神经酰胺代谢的终产物。鞘氨醇和 S1P 的药理学抑制剂与鞘氨醇和 S1P 的鞘内给药共同给药可阻断脊髓 S1P 的形成,并阻止大鼠的痛觉过敏和耐受的发展。我们的结果表明,脊髓中形成的 S1P 信号至少部分通过(1)调节神经胶质功能,因为抑制 S1P 的形成可阻断与神经胶质相关的促炎细胞因子(肿瘤坏死因子-α、白细胞介素-1β、白细胞介素-6)的形成增加,已知这些细胞因子可调节神经元兴奋性,以及(2)过氧亚硝酸盐介导的与神经胶质相关的酶(谷氨酰胺合成酶和谷氨酸转运蛋白)的翻译后硝化和失活,这些酶在谷氨酸神经递质传递中起关键作用。鞘脂代谢途径的抑制剂可能具有治疗潜力,可作为阿片类药物的辅助手段,用于缓解慢性疼痛。

相似文献

1
Counter-regulation of opioid analgesia by glial-derived bioactive sphingolipids.
J Neurosci. 2010 Nov 17;30(46):15400-8. doi: 10.1523/JNEUROSCI.2391-10.2010.
3
Sphingosine-1-phosphate acting via the S1P₁ receptor is a downstream signaling pathway in ceramide-induced hyperalgesia.
Neurosci Lett. 2011 Jul 15;499(1):4-8. doi: 10.1016/j.neulet.2011.05.018. Epub 2011 May 13.
4
Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia.
Brain Behav Immun. 2008 Nov;22(8):1178-89. doi: 10.1016/j.bbi.2008.05.004. Epub 2008 Jul 2.
5
Roles for C16-ceramide and sphingosine 1-phosphate in regulating hepatocyte apoptosis in response to tumor necrosis factor-alpha.
J Biol Chem. 2005 Jul 29;280(30):27879-87. doi: 10.1074/jbc.M503002200. Epub 2005 Jun 9.
7
Sphingosine-1-Phosphate Is a Crucial Signal for Migration of Retina Müller Glial Cells.
Invest Ophthalmol Vis Sci. 2015 Sep;56(10):5808-15. doi: 10.1167/iovs.14-16195.
9
Role for peroxynitrite in sphingosine-1-phosphate-induced hyperalgesia in rats.
Pain. 2011 Mar;152(3):643-648. doi: 10.1016/j.pain.2010.12.011. Epub 2011 Jan 15.

引用本文的文献

2
Fundamental Neurochemistry Review: Lipids across microglial states.
J Neurochem. 2025 Jan;169(1):e16259. doi: 10.1111/jnc.16259.
3
Dysregulation of sphingolipid metabolism in pain.
Front Pharmacol. 2024 Mar 8;15:1337150. doi: 10.3389/fphar.2024.1337150. eCollection 2024.
6
Role of Adenosine Kinase in Sphingosine-1-Phosphate Receptor 1-Induced Mechano-Hypersensitivities.
Cell Mol Neurobiol. 2022 Nov;42(8):2909-2918. doi: 10.1007/s10571-021-01162-8. Epub 2021 Nov 13.
8
Drug Addiction: Hyperkatifeia/Negative Reinforcement as a Framework for Medications Development.
Pharmacol Rev. 2021 Jan;73(1):163-201. doi: 10.1124/pharmrev.120.000083.
9
Natural Antioxidant Control of Neuropathic Pain-Exploring the Role of Mitochondrial SIRT3 Pathway.
Antioxidants (Basel). 2020 Nov 9;9(11):1103. doi: 10.3390/antiox9111103.

本文引用的文献

1
Spinal NADPH oxidase is a source of superoxide in the development of morphine-induced hyperalgesia and antinociceptive tolerance.
Neurosci Lett. 2010 Oct 11;483(2):85-9. doi: 10.1016/j.neulet.2010.07.013. Epub 2010 Jul 14.
2
Spinal upregulation of glutamate transporter GLT-1 by ceftriaxone: therapeutic efficacy in a range of experimental nervous system disorders.
Neuroscience. 2010 Sep 15;169(4):1888-900. doi: 10.1016/j.neuroscience.2010.06.014. Epub 2010 Jun 11.
3
Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia.
Neuroscience. 2010 Mar 10;166(1):132-44. doi: 10.1016/j.neuroscience.2009.12.020. Epub 2009 Dec 28.
4
The "toll" of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia.
Trends Pharmacol Sci. 2009 Nov;30(11):581-91. doi: 10.1016/j.tips.2009.08.002. Epub 2009 Sep 15.
5
Central sensitization: a generator of pain hypersensitivity by central neural plasticity.
J Pain. 2009 Sep;10(9):895-926. doi: 10.1016/j.jpain.2009.06.012.
6
Spinal ceramide and neuronal apoptosis in morphine antinociceptive tolerance.
Neurosci Lett. 2009 Sep 29;463(1):49-53. doi: 10.1016/j.neulet.2009.07.051. Epub 2009 Jul 23.
7
Targeting peroxynitrite driven nitroxidative stress with synzymes: A novel therapeutic approach in chronic pain management.
Life Sci. 2010 Apr 10;86(15-16):604-14. doi: 10.1016/j.lfs.2009.06.011. Epub 2009 Jul 1.
9
Peroxynitrite: a strategic linchpin of opioid analgesic tolerance.
Trends Pharmacol Sci. 2009 Apr;30(4):194-202. doi: 10.1016/j.tips.2008.12.005. Epub 2009 Mar 2.
10
Pathological and protective roles of glia in chronic pain.
Nat Rev Neurosci. 2009 Jan;10(1):23-36. doi: 10.1038/nrn2533.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验