Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, London, UK.
Blood. 2011 Feb 3;117(5):1614-21. doi: 10.1182/blood-2010-07-298422. Epub 2010 Nov 24.
Using proteins in a therapeutic context often requires engineering to modify functionality and enhance efficacy. We have previously reported that the therapeutic antileukemic protein macromolecule Escherichia coli L-asparaginase is degraded by leukemic lysosomal cysteine proteases. In the present study, we successfully engineered L-asparaginase to resist proteolytic cleavage and at the same time improve activity. We employed a novel combination of mutant sampling using a genetic algorithm in tandem with flexibility studies using molecular dynamics to investigate the impact of lid-loop and mutations on drug activity. Applying these methods, we successfully predicted the more active L-asparaginase mutants N24T and N24A. For the latter, a unique hydrogen bond network contributes to higher activity. Furthermore, interface mutations controlling secondary glutaminase activity demonstrated the importance of this enzymatic activity for drug cytotoxicity. All selected mutants were expressed, purified, and tested for activity and for their ability to form the active tetrameric form. By introducing the N24A and N24A R195S mutations to the drug L-asparaginase, we are a step closer to individualized drug design.
在治疗环境中使用蛋白质通常需要进行工程改造,以改变其功能并提高疗效。我们之前曾报道过,治疗性抗白血病蛋白大分子大肠杆菌 L-天冬酰胺酶会被白血病溶酶体半胱氨酸蛋白酶降解。在本研究中,我们成功地对 L-天冬酰胺酶进行了工程改造,使其能够抵抗蛋白水解切割,同时提高其活性。我们采用了一种新颖的方法,将遗传算法的突变采样与分子动力学的柔性研究相结合,以研究盖子环和突变对药物活性的影响。应用这些方法,我们成功地预测出更具活性的 L-天冬酰胺酶突变体 N24T 和 N24A。对于后者,独特的氢键网络有助于提高其活性。此外,控制次要谷氨酰胺酶活性的界面突变表明了这种酶活性对药物细胞毒性的重要性。所有选定的突变体均进行了表达、纯化,并对其活性和形成活性四聚体的能力进行了测试。通过向药物 L-天冬酰胺酶中引入 N24A 和 N24A R195S 突变,我们在个体化药物设计方面又迈进了一步。