Suppr超能文献

原核生物与哺乳动物寡肽-质子共转运体 PepT1 和 PepT2 同源物的晶体结构。

Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2.

机构信息

Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College London, London, UK.

出版信息

EMBO J. 2011 Jan 19;30(2):417-26. doi: 10.1038/emboj.2010.309. Epub 2010 Dec 3.

Abstract

PepT1 and PepT2 are major facilitator superfamily (MFS) transporters that utilize a proton gradient to drive the uptake of di- and tri-peptides in the small intestine and kidney, respectively. They are the major routes by which we absorb dietary nitrogen and many orally administered drugs. Here, we present the crystal structure of PepT(So), a functionally similar prokaryotic homologue of the mammalian peptide transporters from Shewanella oneidensis. This structure, refined using data up to 3.6 Å resolution, reveals a ligand-bound occluded state for the MFS and provides new insights into a general transport mechanism. We have located the peptide-binding site in a central hydrophilic cavity, which occludes a bound ligand from both sides of the membrane. Residues thought to be involved in proton coupling have also been identified near the extracellular gate of the cavity. Based on these findings and associated kinetic data, we propose that PepT(So) represents a sound model system for understanding mammalian peptide transport as catalysed by PepT1 and PepT2.

摘要

PepT1 和 PepT2 是主要协同转运蛋白超家族 (MFS) 的转运蛋白,分别利用质子梯度来驱动小肠和肾脏中二肽和三肽的摄取。它们是我们吸收膳食氮和许多口服药物的主要途径。在这里,我们展示了 PepT(So)的晶体结构,PepT(So) 是来自希瓦氏菌的一种功能上类似于哺乳动物肽转运蛋白的原核同系物。该结构使用高达 3.6Å 分辨率的数据进行了精修,揭示了 MFS 的配体结合的封闭状态,并为一般转运机制提供了新的见解。我们已经在中央亲水区定位了肽结合位点,该位点将结合的配体从膜的两侧封闭。还在腔的细胞外门附近鉴定了被认为与质子偶联有关的残基。基于这些发现和相关的动力学数据,我们提出 PepT(So) 代表了一个很好的模型系统,可用于理解 PepT1 和 PepT2 催化的哺乳动物肽转运。

相似文献

1
Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2.
EMBO J. 2011 Jan 19;30(2):417-26. doi: 10.1038/emboj.2010.309. Epub 2010 Dec 3.
2
Selectivity mechanism of a bacterial homolog of the human drug-peptide transporters PepT1 and PepT2.
Nat Struct Mol Biol. 2014 Aug;21(8):728-31. doi: 10.1038/nsmb.2860. Epub 2014 Jul 27.
3
Crystal Structures of the Extracellular Domain from PepT1 and PepT2 Provide Novel Insights into Mammalian Peptide Transport.
Structure. 2015 Oct 6;23(10):1889-1899. doi: 10.1016/j.str.2015.07.016. Epub 2015 Aug 27.
5
Structural insights into substrate recognition in proton-dependent oligopeptide transporters.
EMBO Rep. 2013 Sep;14(9):804-10. doi: 10.1038/embor.2013.107. Epub 2013 Jul 19.
6
Recent advances in structural biology of peptide transporters.
Curr Top Membr. 2012;70:257-74. doi: 10.1016/B978-0-12-394316-3.00008-9.
7
Structural basis for oligomerization of the prokaryotic peptide transporter PepT.
Acta Crystallogr F Struct Biol Commun. 2019 May 1;75(Pt 5):348-358. doi: 10.1107/S2053230X19003546. Epub 2019 Apr 24.
8
Alternate expression of PEPT1 and PEPT2 in epidermal differentiation is required for NOD2 immune responses by bacteria-derived muramyl dipeptide.
Biochem Biophys Res Commun. 2020 Jan 29;522(1):151-156. doi: 10.1016/j.bbrc.2019.11.044. Epub 2019 Nov 19.
9
Structural basis for polyspecificity in the POT family of proton-coupled oligopeptide transporters.
EMBO Rep. 2014 Aug;15(8):886-93. doi: 10.15252/embr.201338403. Epub 2014 Jun 10.

引用本文的文献

3
Energetics of substrate transport in proton-dependent oligopeptide transporters.
Commun Chem. 2024 Dec 31;7(1):309. doi: 10.1038/s42004-024-01398-7.
4
Structural basis for antibiotic transport and inhibition in PepT2.
Nat Commun. 2024 Oct 9;15(1):8755. doi: 10.1038/s41467-024-53096-6.
6
The mechanism of mammalian proton-coupled peptide transporters.
Elife. 2024 Jul 23;13:RP96507. doi: 10.7554/eLife.96507.
8
A novel major facilitator superfamily-type tripartite efflux system CprABC mediates resistance to polymyxins in sp. PL22-22A.
Front Microbiol. 2024 Feb 23;15:1346340. doi: 10.3389/fmicb.2024.1346340. eCollection 2024.
10
Functional Characterization of the Putative POT from .
Biology (Basel). 2023 Apr 26;12(5):651. doi: 10.3390/biology12050651.

本文引用的文献

2
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Structural perspectives on secondary active transporters.
Trends Pharmacol Sci. 2010 Sep;31(9):418-26. doi: 10.1016/j.tips.2010.06.004. Epub 2010 Jul 23.
5
Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1.
Science. 2010 Apr 23;328(5977):470-3. doi: 10.1126/science.1186303.
6
Projection structure of DtpD (YbgH), a prokaryotic member of the peptide transporter family.
J Mol Biol. 2009 Dec 11;394(4):708-17. doi: 10.1016/j.jmb.2009.09.048. Epub 2009 Sep 24.
7
Ligand binding analyses of the putative peptide transporter YjdL from E. coli display a significant selectivity towards dipeptides.
Biochem Biophys Res Commun. 2009 Nov 6;389(1):112-6. doi: 10.1016/j.bbrc.2009.08.098. Epub 2009 Aug 22.
8
Mutagenesis and cysteine scanning of transmembrane domain 10 of the human dipeptide transporter.
Pharm Res. 2009 Oct;26(10):2358-66. doi: 10.1007/s11095-009-9952-9. Epub 2009 Aug 14.
9
Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls.
Expert Opin Drug Metab Toxicol. 2009 Aug;5(8):887-905. doi: 10.1517/17425250903042292.
10
Unlocking the molecular secrets of sodium-coupled transporters.
Nature. 2009 May 21;459(7245):347-55. doi: 10.1038/nature08143.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验