Suppr超能文献

对 13 对导管浸润性乳腺癌和非肿瘤相邻对照组织的蛋白质组学分析。

Proteomic profiling of 13 paired ductal infiltrating breast carcinomas and non-tumoral adjacent counterparts.

机构信息

Dipartimento di Oncologia Sperimentale e Applicazioni Cliniche (DOSAC), Università di Palermo, Palermo, Italy; Centro di Oncobiologia Sperimentale (COBS), Università di Palermo, Palermo, Italy.

出版信息

Proteomics Clin Appl. 2007 Jan;1(1):118-29. doi: 10.1002/prca.200600334. Epub 2006 Dec 13.

Abstract

According to recent statistics, breast cancer remains one of the leading causes of death among women in Western countries. Breast cancer is a complex and heterogeneous disease, presently classified into several subtypes according to their cellular origin. Among breast cancer histotypes, infiltrating ductal carcinoma represents the most common and potentially aggressive form. Despite the current progress achieved in early cancer detection and treatment, including the new generation of molecular therapies, there is still need for identification of multiparametric biomarkers capable of discriminating between cancer subtypes and predicting cancer progression for personalized therapies. One established step in this direction is the proteomic strategy, expected to provide enough information on breast cancer profiling. To this aim, in the present study we analyzed 13 breast cancer tissues and their matched non-tumoral tissues by 2-DE. Collectively, we identified 51 protein spots, corresponding to 34 differentially expressed proteins, which may represent promising candidate biomarkers for molecular-based diagnosis of breast cancer and for pattern discovery. The relevance of these proteins as factors contributing to breast carcinogenesis is discussed.

摘要

根据最近的统计数据,乳腺癌仍然是西方国家女性死亡的主要原因之一。乳腺癌是一种复杂且异质性的疾病,目前根据其细胞起源分为几种亚型。在乳腺癌组织学类型中,浸润性导管癌是最常见且具有潜在侵袭性的形式。尽管在癌症早期检测和治疗方面取得了目前的进展,包括新一代的分子疗法,但仍需要确定能够区分癌症亚型并预测癌症进展的多参数生物标志物,以实现个体化治疗。在这方面已经采取的一个步骤是蛋白质组学策略,预计可以提供足够的乳腺癌分析信息。为此,在本研究中,我们通过 2-DE 分析了 13 例乳腺癌组织及其匹配的非肿瘤组织。总的来说,我们鉴定了 51 个蛋白点,对应 34 个差异表达蛋白,它们可能是乳腺癌分子诊断和模式发现的有前途的候选生物标志物。讨论了这些蛋白质作为促进乳腺癌发生的因素的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验