Suppr超能文献

用于小直径血管应用的磷脂涂层可生物吸收弹性移植物的体内性能。

In vivo performance of a phospholipid-coated bioerodable elastomeric graft for small-diameter vascular applications.

机构信息

Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA.

出版信息

J Biomed Mater Res A. 2011 Feb;96(2):436-48. doi: 10.1002/jbm.a.32997. Epub 2010 Dec 9.

Abstract

There remains a great need for vascular substitutes for small-diameter applications. The use of an elastomeric biodegradable material, enabling acute antithrombogenicity and long-term in vivo remodeling, could be beneficial for this purpose. Conduits (1.3 mm internal diameter) were obtained by electrospinning biodegradable poly(ester urethane)urea (PEUU), and by luminally immobilizing a non-thrombogenic, 2-methacryloyloxyethyl phosphorylcholine (MPC) copolymer. Platelet adhesion was characterized in vitro after contact with ovine blood. The conduits were implanted as aortic interposition grafts in the rat for 4, 8, 12, and 24 weeks. Surface treatment resulted in a 10-fold decrease in platelet adhesion compared to untreated material. Patency at 8 weeks was 92% for the coated grafts compared to 40% for the non-coated grafts. Histology at 8 and 12 weeks demonstrated formation of cellularized neotissue consisting of aligned collagen and elastin. The lumen of the grafts was confluent with cells qualitatively aligned in the direction of blood flow. Immunohistochemistry suggested the presence of smooth muscle cells in the medial layer of the neotissue and endothelial cells lining the lumen. Mechanically, the grafts were less compliant than rat aortas prior to implantation (4.5 ± 2.0 × 10(-4) mmHg(-1) vs. 14.2 ± 1.1 × 10(-4) mmHg(-1) , respectively), then after 4 weeks in vivo they approximated native values, but subsequently became stiffer again at later time points. The novel coated grafts exhibited promising antithrombogenic and mechanical properties for small-diameter arterial revascularization. Further evaluation in vivo will be required to demonstrate complete remodeling of the graft into a native-like artery.

摘要

对于小直径应用,仍然需要血管替代品。使用具有弹性和生物可降解性的材料,实现急性抗血栓形成和长期体内重塑,可能对此有益。通过电纺法制备具有生物降解性的聚(酯-氨酯)脲(PEUU),并在管腔内固定非血栓形成的 2-甲基丙烯酰氧基乙基磷酸胆碱(MPC)共聚物,得到导管(内径 1.3 毫米)。将羊血与导管接触后,在体外对血小板黏附进行了表征。将导管作为主动脉间置移植物植入大鼠体内 4、8、12 和 24 周。与未处理的材料相比,表面处理可使血小板黏附减少 10 倍。涂层移植物在 8 周时的通畅率为 92%,而非涂层移植物为 40%。8 周和 12 周的组织学显示,形成了由排列的胶原和弹性蛋白组成的细胞化新组织。移植物的管腔与定性地沿血流方向排列的细胞相吻合。免疫组织化学表明,新组织的中膜层存在平滑肌细胞,管腔衬里存在内皮细胞。力学性能方面,移植物植入前的顺应性低于大鼠主动脉(分别为 4.5 ± 2.0×10(-4)mmHg(-1)和 14.2 ± 1.1×10(-4)mmHg(-1)),然后在体内 4 周后接近天然值,但随后在后期时间点再次变得更硬。新型涂层移植物在小直径动脉再血管化方面表现出有前途的抗血栓形成和机械性能。需要进一步的体内评估来证明移植物完全重塑为类似天然的动脉。

相似文献

1
In vivo performance of a phospholipid-coated bioerodable elastomeric graft for small-diameter vascular applications.
J Biomed Mater Res A. 2011 Feb;96(2):436-48. doi: 10.1002/jbm.a.32997. Epub 2010 Dec 9.
3
A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend.
Biomaterials. 2009 May;30(13):2457-67. doi: 10.1016/j.biomaterials.2009.01.013. Epub 2009 Feb 1.
4
Biodegradable poly(ester urethane)urea elastomers with variable amino content for subsequent functionalization with phosphorylcholine.
Acta Biomater. 2014 Nov;10(11):4639-4649. doi: 10.1016/j.actbio.2014.08.008. Epub 2014 Aug 14.
5
7
Regenerative and durable small-diameter graft as an arterial conduit.
Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12710-12719. doi: 10.1073/pnas.1905966116. Epub 2019 Jun 10.
10
Tubular silk scaffolds for small diameter vascular grafts.
Organogenesis. 2010 Oct-Dec;6(4):217-24. doi: 10.4161/org.6.4.13407.

引用本文的文献

1
Antifouling Zwitterionic Polymer Coatings for Blood-Bearing Medical Devices.
Langmuir. 2025 Feb 11;41(5):2994-3006. doi: 10.1021/acs.langmuir.4c04532. Epub 2025 Jan 27.
2
Investigating the efficacy of uncrosslinked porcine collagen coated vascular grafts for neointima formation and endothelialization.
Front Bioeng Biotechnol. 2024 Nov 20;12:1418259. doi: 10.3389/fbioe.2024.1418259. eCollection 2024.
3
Mesenchymal Stem Cell-Conditioned Media-Loaded Microparticles Enhance Acute Patency in Silk-Based Vascular Grafts.
Bioengineering (Basel). 2024 Sep 21;11(9):947. doi: 10.3390/bioengineering11090947.
4
Unravelling Surface Modification Strategies for Preventing Medical Device-Induced Thrombosis.
Adv Healthc Mater. 2024 Jan;13(1):e2301039. doi: 10.1002/adhm.202301039. Epub 2023 Oct 5.
7
A bioactive compliant vascular graft modulates macrophage polarization and maintains patency with robust vascular remodeling.
Bioact Mater. 2022 Apr 13;19:167-178. doi: 10.1016/j.bioactmat.2022.04.004. eCollection 2023 Jan.
8
Rational design of biodegradable thermoplastic polyurethanes for tissue repair.
Bioact Mater. 2021 Dec 31;15:250-271. doi: 10.1016/j.bioactmat.2021.11.029. eCollection 2022 Sep.
9
A Comparative Study of an Anti-Thrombotic Small-Diameter Vascular Graft with Commercially Available e-PTFE Graft in a Porcine Carotid Model.
Tissue Eng Regen Med. 2022 Jun;19(3):537-551. doi: 10.1007/s13770-021-00422-4. Epub 2022 Feb 15.
10
Mechanically tuned vascular graft demonstrates rapid endothelialization and integration into the porcine iliac artery wall.
Acta Biomater. 2021 Apr 15;125:126-137. doi: 10.1016/j.actbio.2021.01.047. Epub 2021 Feb 4.

本文引用的文献

2
A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts.
Acta Biomater. 2010 Jan;6(1):110-22. doi: 10.1016/j.actbio.2009.06.026. Epub 2009 Jun 18.
3
Development of decellularized human umbilical arteries as small-diameter vascular grafts.
Tissue Eng Part A. 2009 Sep;15(9):2665-76. doi: 10.1089/ten.tea.2008.0526.
4
A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend.
Biomaterials. 2009 May;30(13):2457-67. doi: 10.1016/j.biomaterials.2009.01.013. Epub 2009 Feb 1.
5
Degradation and healing characteristics of small-diameter poly(epsilon-caprolactone) vascular grafts in the rat systemic arterial circulation.
Circulation. 2008 Dec 9;118(24):2563-70. doi: 10.1161/CIRCULATIONAHA.108.795732. Epub 2008 Nov 24.
6
In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding.
J Thorac Cardiovasc Surg. 2008 Oct;136(4):900-7. doi: 10.1016/j.jtcvs.2008.02.058. Epub 2008 Jul 3.
7
Angiographic evaluation of carotid artery grafting with prefabricated small-diameter, small-intestinal submucosa grafts in sheep.
Cardiovasc Intervent Radiol. 2009 Jan;32(1):106-13. doi: 10.1007/s00270-008-9449-7. Epub 2008 Oct 18.
8
Neoarteries grown in vivo using a tissue-engineered hyaluronan-based scaffold.
FASEB J. 2008 Aug;22(8):2853-61. doi: 10.1096/fj.08-107284. Epub 2008 Apr 2.
9
Viability of engineered vessels as arterial substitutes.
Ann Vasc Surg. 2008 Mar;22(2):255-65. doi: 10.1016/j.avsg.2007.12.007.
10
Tissue-engineered blood vessel for adult arterial revascularization.
N Engl J Med. 2007 Oct 4;357(14):1451-3. doi: 10.1056/NEJMc071536.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验