Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610-0244, USA.
Gene Ther. 2011 Apr;18(4):319-25. doi: 10.1038/gt.2010.164. Epub 2011 Jan 6.
The incidence of diabetes mellitus has soared to epidemic proportion worldwide. The debilitating chronic hyperglycemia is caused by either lack of insulin as in diabetes type 1 or its ineffectiveness as in diabetes type 2. Frequent replacement of insulin with or without insulin analogs for optimum glycemic control are the conventional cumbersome therapies. Recent application of leptin gene transfer technology has uncovered the participation of adipocytes-derived leptin-dependent hypothalamic neural signaling in glucose homeostasis and demonstrated that a breakdown in this communication due to leptin insufficiency in the hypothalamus underlies the etiology of chronic hyperglycemia. Reinstatement of central leptin sufficiency by hyperleptinemia produced either by intravenous leptin infusion or a single systemic injection of recombinant adenovirus vector encoding leptin gene suppressed hyperglycemia and evoked euglycemia only transiently in rodent models of diabetes type 1. In contrast, stable restoration of leptin sufficiency, solely in the hypothalamus, with biologically active leptin transduced by an intracerebroventicular injection of recombinant adeno-associated virus vector encoding leptin gene (rAAV-lep) abolished hyperglycemia and imposed euglycemia through the extended duration of experiment by stimulating glucose disposal in the periphery in models of diabetes type 1. Further, similar hypothalamic leptin transgene expression abrogated chronic hyperglycemia and hyperinsulinemia, the predisposing risk factors of the age and environmentally acquired diabetes type 2, and instituted euglycemia by independently activating relays that stimulate glucose metabolism and repress hyperinsulinemia and improve insulin sensitivity in the periphery. Consequently, this durable antidiabetic efficacy of one time rAAV-lep neurotherapy offers a potential novel substitute for insulin therapy following preclinical trials in subhuman primates and humans.
糖尿病的发病率在全球范围内飙升至流行程度。这种使人衰弱的慢性高血糖是由 1 型糖尿病中缺乏胰岛素或 2 型糖尿病中胰岛素无效引起的。为了达到最佳的血糖控制,经常需要用胰岛素或胰岛素类似物替代治疗,这是一种传统的繁琐疗法。最近应用瘦素基因转移技术揭示了脂肪细胞衍生的瘦素依赖性下丘脑神经信号在葡萄糖稳态中的参与,并表明由于下丘脑瘦素不足导致这种通讯中断是慢性高血糖的病因。通过静脉内给予瘦素输注或单次全身注射重组腺病毒载体编码瘦素基因,产生高瘦素血症,从而恢复中枢瘦素充足,在 1 型糖尿病的啮齿动物模型中仅短暂抑制高血糖,并引起正常血糖。相比之下,通过向脑室内注射编码瘦素基因的重组腺相关病毒载体(rAAV-lep)转导生物活性瘦素,仅在下丘脑稳定恢复瘦素充足,通过刺激外周葡萄糖摄取,在 1 型糖尿病模型中通过延长实验时间,消除高血糖并维持正常血糖。此外,类似的下丘脑瘦素转基因表达消除了慢性高血糖和高胰岛素血症,这是年龄和环境获得的 2 型糖尿病的易患危险因素,并通过独立激活刺激葡萄糖代谢和抑制高胰岛素血症以及改善外周胰岛素敏感性的代谢途径,建立正常血糖。因此,这种单次 rAAV-lep 神经治疗的持久抗糖尿病疗效为在非人类灵长类动物和人类中进行临床前试验后提供了一种潜在的胰岛素治疗替代方法。