Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
J Mol Biol. 2011 Mar 18;407(1):92-109. doi: 10.1016/j.jmb.2011.01.010. Epub 2011 Jan 19.
Xylanases of glycosyl hydrolase family 30 (GH30) have been shown to cleave β-1,4 linkages of 4-O-methylglucuronoxylan (MeGX(n)) as directed by the position along the xylan chain of an α-1,2-linked 4-O-methylglucuronate (MeGA) moiety. Complete hydrolysis of MeGX(n) by these enzymes results in singly substituted aldouronates having a 4-O-methylglucuronate moiety linked to a xylose penultimate from the reducing terminal xylose and some number of xylose residues toward the nonreducing terminus. This novel mode of action distinguishes GH30 xylanases from the more common xylanase families that cleave MeGX(n) in accessible regions. To help understand this unique biochemical function, we have determined the structure of XynC in its native and ligand-bound forms. XynC structure models derived from diffraction data of XynC crystal soaks with the simple sugar glucuronate (GA) and the tetrameric sugar 4-O-methyl-aldotetrauronate resulted in models containing GA and 4-O-methyl-aldotriuronate, respectively. Each is observed in two locations within XynC surface openings. Ligand coordination occurs within the XynC catalytic substrate binding cleft and on the structurally fused side β-domain, demonstrating a substrate targeting role for this putative carbohydrate binding module. Structural data reveal that GA acts as a primary functional appendage for recognition and hydrolysis of the MeGX(n) polymer by the protein. This work compares the structure of XynC with a previously reported homologous enzyme, XynA, from Erwinia chrysanthemi and analyzes the ligand binding sites. Our results identify the molecular interactions that define the unique function of XynC and homologous GH30 enzymes.
糖苷水解酶家族 30(GH30)的木聚糖酶已被证明能够按照木聚糖链上α-1,2 连接的 4-O-甲基葡萄糖醛酸(MeGA)部分的位置切割 4-O-甲基葡萄糖醛酸木聚糖(MeGX(n))的β-1,4 键。这些酶对 MeGX(n)的完全水解导致单取代醛酸酯,其中 4-O-甲基葡萄糖醛酸部分连接到来自还原末端木糖的木糖倒数第二位和向非还原末端的一些木糖残基。这种新的作用方式将 GH30 木聚糖酶与更常见的木聚糖酶家族区分开来,后者在可及区域切割 MeGX(n)。为了帮助理解这种独特的生化功能,我们已经确定了 XynC 在其天然和配体结合形式下的结构。从 XynC 晶体浸泡在简单糖葡萄糖醛酸(GA)和四聚糖 4-O-甲基-aldotetrauronate 的衍射数据中得到的 XynC 结构模型导致分别包含 GA 和 4-O-甲基-aldotriuronate 的模型。在 XynC 表面开口的两个位置观察到每个模型。配体配位发生在 XynC 催化底物结合裂隙内和结构融合的侧β-结构域上,证明了这个假定的碳水化合物结合模块在底物靶向中的作用。结构数据表明,GA 作为识别和水解 MeGX(n)聚合物的主要功能附加物发挥作用。这项工作比较了 XynC 与来自欧文氏菌属的先前报道的同源酶 XynA 的结构,并分析了配体结合位点。我们的结果确定了定义 XynC 和同源 GH30 酶独特功能的分子相互作用。