Department of Molecular Biology, Case Western Reserve University School of Medicine W205, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
J Virol. 2011 Apr;85(7):3664-76. doi: 10.1128/JVI.01496-10. Epub 2011 Jan 26.
Genetic studies with immunocompetent mice show the importance of both T cells and gamma interferon (IFN-γ) for survival of a measles virus (MV) challenge; however, the direct role of T cells and IFN-γ within the MV-infected brain has not been addressed. Organotypic brain explants represent a successful ex vivo system to define central nervous system (CNS)-specific mechanisms of leukocyte migration, activation, and MV clearance. Within the heterogeneous, brain-derived, primed leukocyte population which reduced MV RNA levels in brain explants by 60%, CD3 T cells are the active antiviral cells, as purified CD3-positive cells are highly antiviral and CD3-negative leukocytes are unable to reduce the viral load. Neutralization of CCL5 and CXCL10 decreases leukocyte migration to areas of infection by 70%. However, despite chemokines directing the migration of T cells to infected neurons, chemokine neutralization revealed that migration is not required for viral clearance, suggesting a cytokine-mediated antiviral mechanism. In accordance with our hypothesis, the ability of leukocytes to clear the virus is abrogated when explants are treated with anti-IFN-γ neutralizing antibodies. IFN-γ applied to infected slices in the absence of primed leukocytes reduces the viral load by more than 80%; therefore, in brain tissue, IFN-γ is both necessary and sufficient to clear MV. Secretion of IFN-γ is stimulated by interleukin-12 (IL-12) in the brain, as neutralization of IL-12 results in loss of antiviral activity and stimulation of leukocytes with IL-12/IL-18 enhances their immune effector function of viral clearance. MV-primed leukocytes can reduce both West Nile and mouse hepatitis viral RNAs, indicating that cytokine-mediated viral clearance occurs in an antigen-independent manner. The IFN-γ signal is transduced within the brain explant by the Jak/STAT signaling pathway, as inhibition of Jak kinases results in a loss of antiviral activity driven by either brain-derived leukocytes or recombinant IFN-γ. These results reveal that primed T cells directly act to clear MV infection of the brain by using a noncytolytic IL-12- and IFN-γ-dependent mechanism in the CNS and that this mechanism relies upon Jak/STAT signaling.
免疫功能正常的小鼠的遗传学研究表明,T 细胞和γ干扰素(IFN-γ)对于麻疹病毒(MV)挑战的生存都很重要;然而,T 细胞和 IFN-γ在 MV 感染的大脑中的直接作用尚未得到解决。器官型脑外植体代表了一个成功的离体系统,可以定义白细胞迁移、激活和 MV 清除的中枢神经系统(CNS)特异性机制。在降低脑外植体中 MV RNA 水平 60%的异质、脑源性、致敏白细胞群体中,CD3 T 细胞是具有抗病毒活性的细胞,因为纯化的 CD3 阳性细胞具有高度抗病毒活性,而 CD3 阴性白细胞则无法降低病毒载量。CCL5 和 CXCL10 的中和作用使感染部位的白细胞迁移减少了 70%。然而,尽管趋化因子指导 T 细胞向感染神经元迁移,但趋化因子中和作用表明迁移对于病毒清除不是必需的,这表明存在一种细胞因子介导的抗病毒机制。与我们的假设一致,当用抗 IFN-γ中和抗体处理外植体时,白细胞清除病毒的能力被削弱。在没有致敏白细胞的情况下,IFN-γ应用于感染的切片可使病毒载量减少 80%以上;因此,在脑组织中,IFN-γ是清除 MV 所必需和充分的。脑内白细胞介素-12(IL-12)刺激 IFN-γ的分泌,因为 IL-12 的中和作用导致抗病毒活性丧失,用 IL-12/IL-18 刺激白细胞可增强其清除病毒的免疫效应功能。MV 致敏的白细胞可以降低西尼罗河病毒和鼠肝炎病毒的 RNA,表明细胞因子介导的病毒清除是以抗原非依赖性方式发生的。IFN-γ信号在脑外植体中通过 Jak/STAT 信号通路转导,因为 Jak 激酶的抑制导致由脑源性白细胞或重组 IFN-γ驱动的抗病毒活性丧失。这些结果表明,致敏 T 细胞通过在中枢神经系统中使用非细胞溶解的 IL-12 和 IFN-γ依赖性机制直接作用于清除 MV 对大脑的感染,并且该机制依赖于 Jak/STAT 信号通路。