Suppr超能文献

通过基因组主导地位以及古代和持续的基因丢失来区分玉米的亚基因组。

Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss.

机构信息

Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4069-74. doi: 10.1073/pnas.1101368108. Epub 2011 Feb 22.

Abstract

Ancient tetraploidies are found throughout the eukaryotes. After duplication, one copy of each duplicate gene pair tends to be lost (fractionate). For all studied tetraploidies, the loss of duplicated genes, known as homeologs, homoeologs, ohnologs, or syntenic paralogs, is uneven between duplicate regions. In maize, a species that experienced a tetraploidy 5-12 million years ago, we show that in addition to uneven ancient gene loss, the two complete genomes contained within maize are differentiated by ongoing fractionation among diverse inbreds as well as by a pattern of overexpression of genes from the genome that has experienced less gene loss. These expression differences are consistent over a range of experiments quantifying RNA abundance in different tissues. We propose that the universal bias in gene loss between the genomes of this ancient tetraploid, and perhaps all tetraploids, is the result of selection against loss of the gene responsible for the majority of total expression for a duplicate gene pair. Although the tetraploidy of maize is ancient, biased gene loss and expression continue today and explain, at least in part, the remarkable genetic diversity found among modern maize cultivars.

摘要

古四倍体存在于所有真核生物中。在复制后,每对重复基因的一个副本往往会丢失(分离)。在所有研究过的四倍体中,重复基因的丢失,称为同源基因、同系基因、同源基因或共线性旁系同源基因,在重复区域之间是不均匀的。在玉米中,一种经历了 500 万到 1200 万年前的四倍体,我们表明,除了不均匀的古老基因丢失之外,玉米内部的两个完整基因组还通过不同自交系之间的持续分离以及经历较少基因丢失的基因组的基因过表达模式而有所区别。这些表达差异在不同组织中定量 RNA 丰度的一系列实验中是一致的。我们提出,这种古老四倍体(也许所有四倍体)中基因组之间基因丢失的普遍偏差是由于选择而导致的,即选择那些负责大多数重复基因对总表达的基因的丢失。尽管玉米的四倍体是古老的,但偏向性基因丢失和表达仍在继续,这至少可以部分解释现代玉米品种中发现的显著遗传多样性。

相似文献

1
Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss.
Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4069-74. doi: 10.1073/pnas.1101368108. Epub 2011 Feb 22.
3
Gene Fractionation and Function in the Ancient Subgenomes of Maize.
Mol Biol Evol. 2017 Aug 1;34(8):1825-1832. doi: 10.1093/molbev/msx121.
5
Patterns and Consequences of Subgenome Differentiation Provide Insights into the Nature of Paleopolyploidy in Plants.
Plant Cell. 2017 Dec;29(12):2974-2994. doi: 10.1105/tpc.17.00595. Epub 2017 Nov 27.
6
Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias.
BMC Genomics. 2016 Nov 4;17(1):875. doi: 10.1186/s12864-016-3194-0.
7
De novo Transcriptome Assemblies Reveal Parallel Gene Evolution with Maize after Ancient Polyploidy.
Plant Genome. 2018 Nov;11(3). doi: 10.3835/plantgenome2018.02.0012.
9
Functional Divergence between Subgenomes and Gene Pairs after Whole Genome Duplications.
Mol Plant. 2018 Mar 5;11(3):388-397. doi: 10.1016/j.molp.2017.12.010. Epub 2017 Dec 22.
10
Two evolutionarily distinct classes of paleopolyploidy.
Mol Biol Evol. 2014 Feb;31(2):448-54. doi: 10.1093/molbev/mst230. Epub 2013 Dec 1.

引用本文的文献

2
Ancient allopolyploidy and specific subgenomic evolution drove the radiation of poplars and willows.
Nat Commun. 2025 Jul 25;16(1):6881. doi: 10.1038/s41467-025-62178-y.
3
Codon usage bias is presumably affected by tRNA selection effects in Actinidia polyploidization events.
BMC Genomics. 2025 Jul 23;26(1):685. doi: 10.1186/s12864-025-11873-7.
4
Subgenome Dominance in Allotetraploid Actinidia valvata Regulates RNA mA Modification for Waterlogging Tolerance.
Adv Sci (Weinh). 2025 Aug;12(32):e03974. doi: 10.1002/advs.202503974. Epub 2025 Jun 5.
6
Chromosome Ordinal Number-Related Genomic Stability Revealed Among and Other Poaceae Plants.
Int J Mol Sci. 2025 May 16;26(10):4778. doi: 10.3390/ijms26104778.
7
Recent allopolyploidization and transcriptomic asymmetry in the mangrove shrub Acanthus tetraploideus.
BMC Genomics. 2025 May 2;26(1):438. doi: 10.1186/s12864-025-11557-2.
8
Global modulation of gene expression and transcriptome size in aneuploid combinations of maize.
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2426749122. doi: 10.1073/pnas.2426749122. Epub 2025 May 1.
9
Oryza genome evolution through a tetraploid lens.
Nat Genet. 2025 May;57(5):1287-1297. doi: 10.1038/s41588-025-02183-5. Epub 2025 Apr 28.
10
Whole Genome Duplication in the Genomics Era: The Hidden Gems in Invertebrates?
Genome Biol Evol. 2025 Apr 30;17(5). doi: 10.1093/gbe/evaf073.

本文引用的文献

1
Genetic interactions reveal the evolutionary trajectories of duplicate genes.
Mol Syst Biol. 2010 Nov 16;6:429. doi: 10.1038/msb.2010.82.
2
The developmental dynamics of the maize leaf transcriptome.
Nat Genet. 2010 Dec;42(12):1060-7. doi: 10.1038/ng.703. Epub 2010 Oct 31.
3
Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor.
Genome Res. 2010 Dec;20(12):1689-99. doi: 10.1101/gr.109165.110. Epub 2010 Oct 29.
4
Digital gene expression signatures for maize development.
Plant Physiol. 2010 Nov;154(3):1024-39. doi: 10.1104/pp.110.159673. Epub 2010 Sep 10.
7
The collapse of gene complement following whole genome duplication.
BMC Genomics. 2010 May 19;11:313. doi: 10.1186/1471-2164-11-313.
10
Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation.
New Phytol. 2010 Apr;186(1):184-93. doi: 10.1111/j.1469-8137.2009.03107.x. Epub 2009 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验