Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
J Neurosci. 2011 Feb 23;31(8):3032-43. doi: 10.1523/JNEUROSCI.4345-10.2011.
Myelination is dependent on complex reciprocal interactions between the Schwann cell (SC) and axon. Recent evidence suggests that the SC-axon interface represents a membrane specialization essential for myelination; however, the manner in which this polarized-apical domain is generated remains a mystery. The cell adhesion molecule N-cadherin is enriched at the SC-axon interface and colocalizes with the polarity protein Par-3. The asymmetric localization is induced on SC-SC and SC-axon contact. Knockdown of N-cadherin in SCs cocultured with DRG neurons disrupts Par-3 localization and delays the initiation of myelination. However, knockdown or overexpression of neuronal N-cadherin does not influence the distribution of Par-3 or myelination, suggesting that homotypic interactions between SC and axonal N-cadherin are not essential for the events surrounding myelination. To further investigate the role of N-cadherin, mice displaying SC-specific gene ablation of N-cadherin were generated and characterized. Surprisingly, myelination is only slightly delayed, and mice are viable without any detectable myelination defects. β-Catenin, a downstream effector of N-cadherin, colocalizes and coimmunoprecipitates with N-cadherin on the initiation of myelination. To determine whether β-catenin mediates compensation on N-cadherin deletion, SC-specific gene ablation of β-catenin was generated and characterized. Consistent with our hypothesis, myelination is more severely delayed than when manipulating N-cadherin alone, but without any defect to the myelin sheath. Together, our results suggest that N-cadherin interacts with β-catenin in establishing SC polarity and the timely initiation of myelination, but they are nonessential components for the formation and maturation of the myelin sheath.
髓鞘形成依赖于施万细胞(Schwann cell,SC)与轴突之间复杂的相互作用。最近的证据表明,SC-轴突界面代表了髓鞘形成所必需的膜特化区域;然而,这种极化顶端区域是如何产生的仍然是一个谜。细胞黏附分子 N-钙黏蛋白在 SC-轴突界面富集,并与极性蛋白 Par-3 共定位。这种不对称的定位是在 SC-SC 和 SC-轴突接触时诱导的。在与 DRG 神经元共培养的 SC 中敲低 N-钙黏蛋白会破坏 Par-3 的定位并延迟髓鞘形成的起始。然而,敲低或过表达神经元 N-钙黏蛋白不会影响 Par-3 或髓鞘形成的分布,这表明 SC 和轴突 N-钙黏蛋白之间的同源相互作用对于围绕髓鞘形成的事件并不是必需的。为了进一步研究 N-钙黏蛋白的作用,生成并表征了 SC 特异性 N-钙黏蛋白基因敲除的小鼠。令人惊讶的是,髓鞘形成仅略有延迟,并且这些小鼠在没有任何可检测的髓鞘缺陷的情况下存活。β-连环蛋白是 N-钙黏蛋白的下游效应物,在髓鞘形成的起始时与 N-钙黏蛋白共定位并共免疫沉淀。为了确定β-连环蛋白是否介导了 N-钙黏蛋白缺失的代偿作用,生成并表征了 SC 特异性β-连环蛋白基因敲除的小鼠。与我们的假设一致,髓鞘形成比单独操纵 N-钙黏蛋白时延迟得更严重,但对髓鞘没有任何缺陷。总之,我们的结果表明,N-钙黏蛋白与β-连环蛋白相互作用,建立了 SC 的极性和髓鞘形成的适时起始,但它们不是髓鞘鞘形成和成熟所必需的组成部分。