Suppr超能文献

嘌呤能 P2X4 受体与 GABA(A)受体的串话决定了中枢突触的突触效能。

Cross-talk between P2X4 and gamma-aminobutyric acid, type A receptors determines synaptic efficacy at a central synapse.

机构信息

Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10467, USA.

出版信息

J Biol Chem. 2011 Jun 3;286(22):19993-20004. doi: 10.1074/jbc.M111.231324. Epub 2011 Apr 11.

Abstract

The essence of neuronal function is to generate outputs in response to synaptic potentials. Synaptic integration at postsynaptic sites determines neuronal outputs in the CNS. Using immunohistochemical and electrophysiological approaches, we first reveal that steroidogenic factor 1 (SF-1) green fluorescent protein (GFP)-positive neurons in the ventromedial nucleus of the hypothalamus express P2X4 subunits that are activated by exogenous ATP. Increased membrane expression of P2X4 channels by using a peptide competing with P2X4 intracellular endocytosis motif enhances neuronal excitability of SF-1 GFP-positive neurons. This increased excitability is inhibited by a P2X receptor antagonist. Furthermore, increased surface P2X4 receptor expression significantly decreases the frequency and the amplitude of GABAergic postsynaptic currents of SF-1 GFP-positive neurons. Co-immunopurification and pulldown assays reveal that P2X4 receptors complex with aminobutyric acid, type A (GABA(A)) receptors and demonstrate that two amino acids in the carboxyl tail of the P2X4 subunit are crucial for its physical association with GABA(A) receptors. Mutation of these two residues prevents the physical association, thereby blocking cross-inhibition between P2X4 and GABA(A) receptors. Moreover, disruption of the physical coupling using competitive peptides containing the identified motif abolishes current inhibition between P2X4 and GABA(A) receptors in recombinant system and P2X4 receptor-mediated GABAergic depression in SF-1 GFP-positive neurons. Our present work thus provides evidence for cross-talk between excitatory and inhibitory receptors that appears to be crucial in determining GABAergic synaptic strength at a central synapse.

摘要

神经元功能的本质是根据突触电位产生输出。突触整合决定了中枢神经系统中神经元的输出。我们首先采用免疫组织化学和电生理学方法揭示,在下丘脑腹内侧核中,类固醇生成因子 1(SF-1)绿色荧光蛋白(GFP)阳性神经元表达可被外源性 ATP 激活的 P2X4 亚基。通过使用与 P2X4 细胞内内吞基序竞争的肽来增加 P2X4 通道的膜表达,可增强 SF-1 GFP 阳性神经元的兴奋性。这种兴奋性增加可被 P2X 受体拮抗剂抑制。此外,表面 P2X4 受体表达增加显著降低 SF-1 GFP 阳性神经元 GABA 能突触后电流的频率和幅度。共免疫纯化和下拉实验表明,P2X4 受体与 GABA A 型受体形成复合物,并证明 P2X4 亚基羧基末端的两个氨基酸对于其与 GABA A 受体的物理结合至关重要。这两个残基的突变可阻止物理结合,从而阻断 P2X4 和 GABA A 受体之间的交叉抑制。此外,使用包含鉴定出的基序的竞争肽破坏物理偶联,可在重组系统中消除 P2X4 和 GABA A 受体之间的电流抑制以及 SF-1 GFP 阳性神经元中的 P2X4 受体介导的 GABA 能抑制。因此,我们目前的工作为兴奋性和抑制性受体之间的串扰提供了证据,这种串扰似乎对于确定中枢突触 GABA 能突触强度至关重要。

相似文献

1
Cross-talk between P2X4 and gamma-aminobutyric acid, type A receptors determines synaptic efficacy at a central synapse.
J Biol Chem. 2011 Jun 3;286(22):19993-20004. doi: 10.1074/jbc.M111.231324. Epub 2011 Apr 11.
2
Interplay between ionotropic receptors modulates inhibitory synaptic strength.
Commun Integr Biol. 2011 Nov 1;4(6):706-9. doi: 10.4161/cib.17291.
3
Cross-Talk between P2X and NMDA Receptors.
Int J Mol Sci. 2020 Sep 29;21(19):7187. doi: 10.3390/ijms21197187.
4
P2X4 subunits are part of P2X native channels in murine myenteric neurons.
Eur J Pharmacol. 2013 Jun 5;709(1-3):93-102. doi: 10.1016/j.ejphar.2013.03.045. Epub 2013 Apr 6.
5
Subunit-specific coupling between gamma-aminobutyric acid type A and P2X2 receptor channels.
J Biol Chem. 2004 Dec 10;279(50):52517-25. doi: 10.1074/jbc.M410223200. Epub 2004 Sep 29.
6
Role of P2X4 receptors in synaptic strengthening in mouse CA1 hippocampal neurons.
Eur J Neurosci. 2011 Jul;34(2):213-20. doi: 10.1111/j.1460-9568.2011.07763.x. Epub 2011 Jul 12.
7
An intracellular motif of P2X(3) receptors is required for functional cross-talk with GABA(A) receptors in nociceptive DRG neurons.
J Neurochem. 2007 Aug;102(4):1357-68. doi: 10.1111/j.1471-4159.2007.04640.x. Epub 2007 May 10.
8
Neuroligin-2 accelerates GABAergic synapse maturation in cerebellar granule cells.
Mol Cell Neurosci. 2009 Sep;42(1):45-55. doi: 10.1016/j.mcn.2009.05.004. Epub 2009 May 20.
10
Loss of leptin receptors on hypothalamic POMC neurons alters synaptic inhibition.
J Neurophysiol. 2010 Nov;104(5):2321-8. doi: 10.1152/jn.00371.2010. Epub 2010 Sep 15.

引用本文的文献

1
Cell Type-Specific Expression of Purinergic P2X Receptors in the Hypothalamus.
Int J Mol Sci. 2025 May 22;26(11):5007. doi: 10.3390/ijms26115007.
2
Regulation of GABAergic neurotransmission by purinergic receptors in brain physiology and disease.
Purinergic Signal. 2025 Feb;21(1):149-177. doi: 10.1007/s11302-024-10034-x. Epub 2024 Jul 24.
3
Role and therapeutic targets of P2X7 receptors in neurodegenerative diseases.
Front Immunol. 2024 Feb 2;15:1345625. doi: 10.3389/fimmu.2024.1345625. eCollection 2024.
4
Triggering of Major Brain Disorders by Protons and ATP: The Role of ASICs and P2X Receptors.
Neurosci Bull. 2023 May;39(5):845-862. doi: 10.1007/s12264-022-00986-8. Epub 2022 Nov 29.
6
Increased surface P2X4 receptors by mutant SOD1 proteins contribute to ALS pathogenesis in SOD1-G93A mice.
Cell Mol Life Sci. 2022 Jul 19;79(8):431. doi: 10.1007/s00018-022-04461-5.
7
Astrocyte Clocks and Glucose Homeostasis.
Front Endocrinol (Lausanne). 2021 Mar 18;12:662017. doi: 10.3389/fendo.2021.662017. eCollection 2021.
8
Regulation of membrane NMDA receptors by dynamics and protein interactions.
J Cell Biol. 2021 Jan 4;220(1). doi: 10.1083/jcb.202006101.
9
Cross-Talk between P2X and NMDA Receptors.
Int J Mol Sci. 2020 Sep 29;21(19):7187. doi: 10.3390/ijms21197187.
10
Implication of Neuronal Versus Microglial P2X4 Receptors in Central Nervous System Disorders.
Neurosci Bull. 2020 Nov;36(11):1327-1343. doi: 10.1007/s12264-020-00570-y. Epub 2020 Sep 5.

本文引用的文献

1
Signaling at purinergic P2X receptors.
Annu Rev Physiol. 2009;71:333-59. doi: 10.1146/annurev.physiol.70.113006.100630.
2
Purinergic signalling and disorders of the central nervous system.
Nat Rev Drug Discov. 2008 Jul;7(7):575-90. doi: 10.1038/nrd2605.
3
Surface trafficking of N-methyl-D-aspartate receptors: physiological and pathological perspectives.
Neuroscience. 2009 Jan 12;158(1):4-18. doi: 10.1016/j.neuroscience.2008.05.029. Epub 2008 Jun 26.
4
GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition.
Nat Rev Neurosci. 2008 May;9(5):331-43. doi: 10.1038/nrn2370.
5
Regulated ATP release from astrocytes through lysosome exocytosis.
Nat Cell Biol. 2007 Aug;9(8):945-53. doi: 10.1038/ncb1620. Epub 2007 Jul 8.
6
An intracellular motif of P2X(3) receptors is required for functional cross-talk with GABA(A) receptors in nociceptive DRG neurons.
J Neurochem. 2007 Aug;102(4):1357-68. doi: 10.1111/j.1471-4159.2007.04640.x. Epub 2007 May 10.
8
Regulatory mechanisms of AMPA receptors in synaptic plasticity.
Nat Rev Neurosci. 2007 Feb;8(2):101-13. doi: 10.1038/nrn2055.
10
Genome-wide atlas of gene expression in the adult mouse brain.
Nature. 2007 Jan 11;445(7124):168-76. doi: 10.1038/nature05453. Epub 2006 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验