Suppr超能文献

TET1 和羟甲基胞嘧啶在转录和 DNA 甲基化保真度中的作用。

TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity.

机构信息

Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.

出版信息

Nature. 2011 May 19;473(7347):343-8. doi: 10.1038/nature10066. Epub 2011 Apr 13.

Abstract

Enzymes catalysing the methylation of the 5-position of cytosine (mC) have essential roles in regulating gene expression and maintaining cellular identity. Recently, TET1 was found to hydroxylate the methyl group of mC, converting it to 5-hydroxymethyl cytosine (hmC). Here we show that TET1 binds throughout the genome of embryonic stem cells, with the majority of binding sites located at transcription start sites (TSSs) of CpG-rich promoters and within genes. The hmC modification is found in gene bodies and in contrast to mC is also enriched at CpG-rich TSSs. We provide evidence further that TET1 has a role in transcriptional repression. TET1 binds a significant proportion of Polycomb group target genes. Furthermore, TET1 associates and colocalizes with the SIN3A co-repressor complex. We propose that TET1 fine-tunes transcription, opposes aberrant DNA methylation at CpG-rich sequences and thereby contributes to the regulation of DNA methylation fidelity.

摘要

催化胞嘧啶 5 位甲基化的酶(mC)在调节基因表达和维持细胞身份方面发挥着重要作用。最近,TET1 被发现能够羟化 mC 的甲基,将其转化为 5-羟甲基胞嘧啶(hmC)。在这里,我们表明 TET1 结合在胚胎干细胞的整个基因组中,大多数结合位点位于富含 CpG 的启动子的转录起始位点(TSS)和基因内。hmC 修饰存在于基因体中,与 mC 不同,它也在富含 CpG 的 TSS 处富集。我们进一步提供证据表明 TET1 在转录抑制中起作用。TET1 结合了大量 Polycomb 组靶基因。此外,TET1 与 SIN3A 共抑制复合物结合并共定位。我们提出 TET1 可以精细调节转录,反对富含 CpG 的序列中异常的 DNA 甲基化,从而有助于调节 DNA 甲基化保真度。

相似文献

1
TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity.
Nature. 2011 May 19;473(7347):343-8. doi: 10.1038/nature10066. Epub 2011 Apr 13.
2
Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells.
Nature. 2011 May 19;473(7347):389-93. doi: 10.1038/nature09934. Epub 2011 Mar 30.
4
Epigenetics: Tet proteins in the limelight.
Nature. 2011 May 19;473(7347):293-4. doi: 10.1038/473293a.
5
Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation.
Nature. 2011 May 19;473(7347):398-402. doi: 10.1038/nature10008. Epub 2011 Apr 3.
6
Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells.
Mol Cell. 2011 May 20;42(4):451-64. doi: 10.1016/j.molcel.2011.04.005. Epub 2011 Apr 21.
7
Tet1 and 5-hydroxymethylation: a genome-wide view in mouse embryonic stem cells.
Cell Cycle. 2011 Aug 1;10(15):2428-36. doi: 10.4161/cc.10.15.16930.
9
Altering TET dioxygenase levels within physiological range affects DNA methylation dynamics of HEK293 cells.
Epigenetics. 2015;10(9):819-33. doi: 10.1080/15592294.2015.1073879. Epub 2015 Jul 17.
10
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1.
Science. 2009 May 15;324(5929):930-5. doi: 10.1126/science.1170116. Epub 2009 Apr 16.

引用本文的文献

1
Mechanisms of human germ cell development.
Nat Rev Mol Cell Biol. 2025 Sep 16. doi: 10.1038/s41580-025-00893-6.
2
Pioneering contribution of Professor Bruce Ames to early development in biochemical aspects of oxidatively generated damage to DNA.
Front Mol Biosci. 2025 Aug 20;12:1636255. doi: 10.3389/fmolb.2025.1636255. eCollection 2025.
3
The role of DNA methylation and demethylation in bladder cancer: a focus on therapeutic strategies.
Front Oncol. 2025 Jun 26;15:1567242. doi: 10.3389/fonc.2025.1567242. eCollection 2025.
4
Tet1 safeguards lineage allocation in intestinal stem cells.
bioRxiv. 2025 May 13:2025.05.08.652522. doi: 10.1101/2025.05.08.652522.
5
Potential therapeutic targets for ischemic stroke in pre-clinical studies: Epigenetic-modifying enzymes DNMT/TET and HAT/HDAC.
Front Pharmacol. 2025 Apr 28;16:1571276. doi: 10.3389/fphar.2025.1571276. eCollection 2025.
6
TET3 regulates hematopoietic stem cell homeostasis during embryonic and adult hematopoiesis.
Hemasphere. 2025 May 6;9(5):e70140. doi: 10.1002/hem3.70140. eCollection 2025 May.
9
Liver TET1 promotes metabolic dysfunction-associated steatotic liver disease.
EMBO Mol Med. 2025 May;17(5):1101-1117. doi: 10.1038/s44321-025-00224-4. Epub 2025 Mar 31.
10
Crosstalk between metabolism and epigenetics during macrophage polarization.
Epigenetics Chromatin. 2025 Mar 29;18(1):16. doi: 10.1186/s13072-025-00575-9.

本文引用的文献

2
Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine.
Nat Biotechnol. 2011 Jan;29(1):68-72. doi: 10.1038/nbt.1732. Epub 2010 Dec 12.
4
Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA.
Nucleic Acids Res. 2010 Oct;38(19):e181. doi: 10.1093/nar/gkq684. Epub 2010 Aug 4.
6
Conserved role of intragenic DNA methylation in regulating alternative promoters.
Nature. 2010 Jul 8;466(7303):253-7. doi: 10.1038/nature09165.
7
c-Myc regulates transcriptional pause release.
Cell. 2010 Apr 30;141(3):432-45. doi: 10.1016/j.cell.2010.03.030.
8
JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells.
Nature. 2010 Mar 11;464(7286):306-10. doi: 10.1038/nature08788.
9
The UCSC Genome Browser database: update 2010.
Nucleic Acids Res. 2010 Jan;38(Database issue):D613-9. doi: 10.1093/nar/gkp939. Epub 2009 Nov 11.
10
Novel TET2 mutations associated with UPD4q24 in myelodysplastic syndrome.
J Clin Oncol. 2009 Aug 20;27(24):4002-6. doi: 10.1200/JCO.2009.22.6985. Epub 2009 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验