Suppr超能文献

矿物颗粒长径比的形态和化学毒性机制

Morphological and chemical mechanisms of elongated mineral particle toxicities.

机构信息

Chemistry and Biochemistry Department, Utah State University, Huachuca City, Arizona, USA.

出版信息

J Toxicol Environ Health B Crit Rev. 2011;14(1-4):40-75. doi: 10.1080/10937404.2011.556046.

Abstract

Much of our understanding regarding the mechanisms for induction of disease following inhalation of respirable elongated mineral particles (REMP) is based on studies involving the biological effects of asbestos fibers. The factors governing the disease potential of an exposure include duration and frequency of exposures; tissue-specific dose over time; impacts on dose persistence from in vivo REMP dissolution, comminution, and clearance; individual susceptibility; and the mineral type and surface characteristics. The mechanisms associated with asbestos particle toxicity involve two facets for each particle's contribution: (1) the physical features of the inhaled REMP, which include width, length, aspect ratio, and effective surface area available for cell contact; and (2) the surface chemical composition and reactivity of the individual fiber/elongated particle. Studies in cell-free systems and with cultured cells suggest an important way in which REMP from asbestos damage cellular molecules or influence cellular processes. This may involve an unfortunate combination of the ability of REMP to chemically generate potentially damaging reactive oxygen species, through surface iron, and the interaction of the unique surfaces with cell membranes to trigger membrane receptor activation. Together these events appear to lead to a cascade of cellular events, including the production of damaging reactive nitrogen species, which may contribute to the disease process. Thus, there is a need to be more cognizant of the potential impact that the total surface area of REMP contributes to the generation of events resulting in pathological changes in biological systems. The information presented has applicability to inhaled dusts, in general, and specifically to respirable elongated mineral particles.

摘要

我们对吸入可吸入长形矿物质颗粒(REMP)后疾病发生机制的理解很大程度上基于涉及石棉纤维生物效应的研究。决定暴露疾病潜力的因素包括暴露的持续时间和频率;随时间推移的组织特异性剂量;体内 REMP 溶解、粉碎和清除对剂量持久性的影响;个体易感性;以及矿物质类型和表面特性。与石棉颗粒毒性相关的机制涉及每个颗粒贡献的两个方面:(1)吸入的 REM 的物理特征,包括宽度、长度、纵横比和可用于细胞接触的有效表面积;(2)单个纤维/伸长颗粒的表面化学成分和反应性。在无细胞系统和培养细胞中的研究表明,REMP 损害细胞分子或影响细胞过程的一种重要方式。这可能涉及 REM 能够通过表面铁化学产生潜在有害的活性氧物种的不幸组合,以及独特表面与细胞膜的相互作用以触发膜受体激活。这些事件共同导致细胞事件的级联,包括产生破坏性的活性氮物种,这可能导致疾病过程。因此,需要更加意识到 REM 的总表面积对导致生物系统发生病理变化的事件的产生的潜在影响。所提出的信息适用于一般吸入粉尘,特别是可吸入长形矿物质颗粒。

相似文献

1
Morphological and chemical mechanisms of elongated mineral particle toxicities.
J Toxicol Environ Health B Crit Rev. 2011;14(1-4):40-75. doi: 10.1080/10937404.2011.556046.
2
Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos.
J Toxicol Environ Health B Crit Rev. 2011;14(1-4):76-121. doi: 10.1080/10937404.2011.556047.
3
Biological mechanisms of non-linear dose-response for respirable mineral fibers.
Toxicol Appl Pharmacol. 2018 Dec 15;361:137-144. doi: 10.1016/j.taap.2018.06.016. Epub 2018 Jun 20.
4
Toxicokinetics and effects of fibrous and nonfibrous particles.
Inhal Toxicol. 2002 Jan;14(1):29-56. doi: 10.1080/089583701753338622.
5
Pulmonary toxicity screening studies in male rats with M5 respirable fibers and particulates.
Inhal Toxicol. 2007 Sep;19(11):951-63. doi: 10.1080/08958370701515852.
6
Predicting EMP hazard: Lessons from studies with inhaled fibrous and non-fibrous nano- and micro-particles.
Toxicol Appl Pharmacol. 2018 Dec 15;361:50-61. doi: 10.1016/j.taap.2018.05.004. Epub 2018 May 8.
7
Surface reactivity in the pathogenic response to particulates.
Environ Health Perspect. 1997 Sep;105 Suppl 5(Suppl 5):1013-20. doi: 10.1289/ehp.97105s51013.
8
Multiple modes of action of asbestos and related mineral fibers.
J Toxicol Environ Health B Crit Rev. 2011;14(1-4):1-2. doi: 10.1080/10937404.2011.556044.
10
Non-neoplastic and neoplastic pleural endpoints following fiber exposure.
J Toxicol Environ Health B Crit Rev. 2011;14(1-4):153-78. doi: 10.1080/10937404.2011.556049.

引用本文的文献

3
Effect of Synthetic Vitreous Fiber Exposure on TMEM16A Channels in a Oocyte Model.
Int J Mol Sci. 2024 Aug 8;25(16):8661. doi: 10.3390/ijms25168661.
4
Shapes of Hyperspectral Imaged Microplastics.
Environ Sci Technol. 2023 Aug 22;57(33):12431-12441. doi: 10.1021/acs.est.3c03517. Epub 2023 Aug 10.
5
Microbe-Mineral Interactions between Asbestos and Thermophilic Chemolithoautotrophic Anaerobes.
Appl Environ Microbiol. 2023 Jun 28;89(6):e0204822. doi: 10.1128/aem.02048-22. Epub 2023 Apr 17.
7
Editorial: Exploring impacts of combined exposures to particles and chemicals on immune reactions across living organisms.
Front Toxicol. 2023 Mar 6;5:1148374. doi: 10.3389/ftox.2023.1148374. eCollection 2023.
8
A new approach to deposit homogeneous samples of asbestos fibres for toxicological tests .
Front Chem. 2023 Feb 14;11:1116463. doi: 10.3389/fchem.2023.1116463. eCollection 2023.
9
3D DEM Simulations and Experiments on Spherical Impactor Penetrating into the Elongated Particles.
Materials (Basel). 2023 Feb 16;16(4):1664. doi: 10.3390/ma16041664.
10
The Potential Contribution of Hexavalent Chromium to the Carcinogenicity of Chrysotile Asbestos.
Chem Res Toxicol. 2022 Dec 19;35(12):2335-2347. doi: 10.1021/acs.chemrestox.2c00314. Epub 2022 Nov 21.

本文引用的文献

1
Role of mutagenicity in asbestos fiber-induced carcinogenicity and other diseases.
J Toxicol Environ Health B Crit Rev. 2011;14(1-4):179-245. doi: 10.1080/10937404.2011.556051.
2
Toxicity testing in the 21st century: a vision and a strategy.
J Toxicol Environ Health B Crit Rev. 2010 Feb;13(2-4):51-138. doi: 10.1080/10937404.2010.483176.
3
Inhaled carbon nanotubes reach the subpleural tissue in mice.
Nat Nanotechnol. 2009 Nov;4(11):747-51. doi: 10.1038/nnano.2009.305. Epub 2009 Oct 25.
4
The health impact of nonoccupational exposure to asbestos: what do we know?
Eur J Cancer Prev. 2009 Nov;18(6):489-503. doi: 10.1097/CEJ.0b013e32832f9bee.
5
A review of human carcinogens--Part C: metals, arsenic, dusts, and fibres.
Lancet Oncol. 2009 May;10(5):453-4. doi: 10.1016/s1470-2045(09)70134-2.
6
Asbestos fibers in para-aortic and mesenteric lymph nodes.
Am J Ind Med. 2009 Jun;52(6):464-70. doi: 10.1002/ajim.20694.
8
Asbestos-related disease--a preventable burden.
Lancet. 2008 Dec 6;372(9654):1927. doi: 10.1016/S0140-6736(08)61821-8.
9
Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study.
Nat Nanotechnol. 2008 Jul;3(7):423-8. doi: 10.1038/nnano.2008.111. Epub 2008 May 20.
10
Environmental exposure to Libby Asbestos and mesotheliomas.
Am J Ind Med. 2008 Nov;51(11):877-80. doi: 10.1002/ajim.20620.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验