Suppr超能文献

小麦、大麦及其亲缘植物的大型和复杂基因组中,基因频繁转移和假基因演化是常见现象。

Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives.

机构信息

Institute of Plant Biology, University of Zurich, Zurich, Switzerland.

出版信息

Plant Cell. 2011 May;23(5):1706-18. doi: 10.1105/tpc.111.086629. Epub 2011 May 27.

Abstract

All six arms of the group 1 chromosomes of hexaploid wheat (Triticum aestivum) were sequenced with Roche/454 to 1.3- to 2.2-fold coverage and compared with similar data sets from the homoeologous chromosome 1H of barley (Hordeum vulgare). Six to ten thousand gene sequences were sampled per chromosome. These were classified into genes that have their closest homologs in the Triticeae group 1 syntenic region in Brachypodium, rice (Oryza sativa), and/or sorghum (Sorghum bicolor) and genes that have their homologs elsewhere in these model grass genomes. Although the number of syntenic genes was similar between the homologous groups, the amount of nonsyntenic genes was found to be extremely diverse between wheat and barley and even between wheat subgenomes. Besides a small core group of genes that are nonsyntenic in other grasses but conserved among Triticeae, we found thousands of genic sequences that are specific to chromosomes of one single species or subgenome. By examining in detail 50 genes from chromosome 1H for which BAC sequences were available, we found that many represent pseudogenes that resulted from transposable element activity and double-strand break repair. Thus, Triticeae seem to accumulate nonsyntenic genes frequently. Since many of them are likely to be pseudogenes, total gene numbers in Triticeae are prone to pronounced overestimates.

摘要

六倍体小麦(Triticum aestivum)的第 1 组染色体的所有 6 条臂都被罗氏/454 测序至 1.3-2.2 倍覆盖度,并与大麦(Hordeum vulgare)同源 1H 染色体的类似数据集进行了比较。每条染色体采样了 6000 到 10000 个基因序列。这些序列被分为在拟南芥、水稻(Oryza sativa)和/或高粱(Sorghum bicolor)的小麦第 1 组同源区域具有最近同源基因的基因,以及在这些模式草基因组的其他地方具有同源基因的基因。尽管同源组之间的同源基因数量相似,但在小麦和大麦之间,甚至在小麦亚基因组之间,非同源基因的数量被发现极其多样化。除了在其他禾本科植物中为非同源但在小麦族中保守的一小部分核心基因外,我们还发现了数千个特定于单个物种或亚基因组的基因序列。通过详细检查来自 1H 染色体的 50 个具有 BAC 序列的基因,我们发现许多代表转座元件活性和双链断裂修复导致的假基因。因此,小麦族似乎经常积累非同源基因。由于其中许多可能是假基因,因此小麦族的总基因数量容易被高估。

相似文献

3
Gene content and virtual gene order of barley chromosome 1H.
Plant Physiol. 2009 Oct;151(2):496-505. doi: 10.1104/pp.109.142612. Epub 2009 Aug 19.
5
Unlocking the barley genome by chromosomal and comparative genomics.
Plant Cell. 2011 Apr;23(4):1249-63. doi: 10.1105/tpc.110.082537. Epub 2011 Apr 5.
6
Reticulate evolution of the rye genome.
Plant Cell. 2013 Oct;25(10):3685-98. doi: 10.1105/tpc.113.114553. Epub 2013 Oct 8.
7
Fine mapping and syntenic integration of the semi-dwarfing gene sdw3 of barley.
Funct Integr Genomics. 2010 Nov;10(4):509-21. doi: 10.1007/s10142-010-0173-4. Epub 2010 May 13.
10
Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15780-5. doi: 10.1073/pnas.0908195106. Epub 2009 Aug 26.

引用本文的文献

1
Does chromoanagenesis play a role in the origin of B chromosomes?
Heredity (Edinb). 2025 Apr 19. doi: 10.1038/s41437-025-00758-w.
4
Analyses of Genes Suggest to Regulate Lateral Spikelet Development in Barley.
Plants (Basel). 2021 Dec 20;10(12):2825. doi: 10.3390/plants10122825.
5
Genome-Wide Identification, Evolution, and Expression Analysis of LBD Transcription Factor Family in Bread Wheat ( L.).
Front Plant Sci. 2021 Sep 3;12:721253. doi: 10.3389/fpls.2021.721253. eCollection 2021.
6
Androgenic-Induced Transposable Elements Dependent Sequence Variation in Barley.
Int J Mol Sci. 2021 Jun 24;22(13):6783. doi: 10.3390/ijms22136783.
7
Genome-wide discovery of G-quadruplexes in barley.
Sci Rep. 2021 Apr 12;11(1):7876. doi: 10.1038/s41598-021-86838-3.
8
Genome wide identification of QTL associated with yield and yield components in two popular wheat cultivars TAM 111 and TAM 112.
PLoS One. 2020 Dec 2;15(12):e0237293. doi: 10.1371/journal.pone.0237293. eCollection 2020.

本文引用的文献

1
Localization of translocation breakpoints in somatic metaphase chromosomes of barley.
Theor Appl Genet. 1994 Oct;89(2-3):240-8. doi: 10.1007/BF00225148.
2
Unlocking the barley genome by chromosomal and comparative genomics.
Plant Cell. 2011 Apr;23(4):1249-63. doi: 10.1105/tpc.110.082537. Epub 2011 Apr 5.
3
Lowly expressed genes in Arabidopsis thaliana bear the signature of possible pseudogenization by promoter degradation.
Mol Biol Evol. 2011 Mar;28(3):1193-203. doi: 10.1093/molbev/msq298. Epub 2010 Nov 8.
5
Patching gaps in plant genomes results in gene movement and erosion of colinearity.
Genome Res. 2010 Sep;20(9):1229-37. doi: 10.1101/gr.107284.110. Epub 2010 Jun 7.
6
Genome sequencing and analysis of the model grass Brachypodium distachyon.
Nature. 2010 Feb 11;463(7282):763-8. doi: 10.1038/nature08747.
7
The B73 maize genome: complexity, diversity, and dynamics.
Science. 2009 Nov 20;326(5956):1112-5. doi: 10.1126/science.1178534.
8
Development and implementation of high-throughput SNP genotyping in barley.
BMC Genomics. 2009 Dec 4;10:582. doi: 10.1186/1471-2164-10-582.
9
Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15780-5. doi: 10.1073/pnas.0908195106. Epub 2009 Aug 26.
10
Gene content and virtual gene order of barley chromosome 1H.
Plant Physiol. 2009 Oct;151(2):496-505. doi: 10.1104/pp.109.142612. Epub 2009 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验