Suppr超能文献

脂联素介导氧化应激诱导的心肌细胞重构中的心脏保护作用。

Adiponectin mediates cardioprotection in oxidative stress-induced cardiac myocyte remodeling.

机构信息

Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2011 Sep;301(3):H984-93. doi: 10.1152/ajpheart.00428.2011. Epub 2011 Jun 10.

Abstract

Reactive oxygen species (ROS) induce matrix metalloproteinase (MMP) activity that mediates hypertrophy and cardiac remodeling. Adiponectin (APN), an adipokine, modulates cardiac hypertrophy, but it is unknown if APN inhibits ROS-induced cardiomyocyte remodeling. We tested the hypothesis that APN ameliorates ROS-induced cardiomyocyte remodeling and investigated the mechanisms involved. Cultured adult rat ventricular myocytes (ARVM) were pretreated with recombinant APN (30 μg/ml, 18 h) followed by exposure to physiologic concentrations of H(2)O(2) (1-200 μM). ARVM hypertrophy was measured by [(3)H]leucine incorporation and atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) gene expression by RT-PCR. MMP activity was assessed by in-gel zymography. ROS was induced with angiotensin (ANG)-II (3.2 mg·kg(-1)·day(-1) for 14 days) in wild-type (WT) and APN-deficient (APN-KO) mice. Myocardial MMPs, tissue inhibitors of MMPs (TIMPs), p-AMPK, and p-ERK protein expression were determined. APN significantly decreased H(2)O(2)-induced cardiomyocyte hypertrophy by decreasing total protein, protein synthesis, ANF, and BNP expression. H(2)O(2)-induced MMP-9 and MMP-2 activities were also significantly diminished by APN. APN significantly increased p-AMPK in both nonstimulated and H(2)O(2)-treated ARVM. H(2)O(2)-induced p-ERK activity and NF-κB activity were both abrogated by APN pretreatment. ANG II significantly decreased myocardial p-AMPK and increased p-ERK expression in vivo in APN-KO vs. WT mice. ANG II infusion enhanced cardiac fibrosis and MMP-2-to-TIMP-2 and MMP-9-to-TIMP-1 ratios in APN-KO vs. WT mice. Thus APN inhibits ROS-induced cardiomyocyte remodeling by activating AMPK and inhibiting ERK signaling and NF-κB activity. Its effects on ROS and ultimately on MMP expression define the protective role of APN against ROS-induced cardiac remodeling.

摘要

活性氧(ROS)诱导基质金属蛋白酶(MMP)活性,介导心肌肥厚和心脏重塑。脂联素(APN)是一种脂肪细胞因子,可调节心肌肥厚,但尚不清楚 APN 是否抑制 ROS 诱导的心肌细胞重塑。我们检测了 APN 改善 ROS 诱导的心肌细胞重塑的假说,并研究了涉及的机制。培养成年大鼠心室肌细胞(ARVM)用重组 APN(30μg/ml,18h)预处理,然后暴露于生理浓度的 H₂O₂(1-200μM)。通过[(3)H]亮氨酸掺入和 RT-PCR 测定心钠肽(ANF)和脑钠肽(BNP)基因表达来测量 ARVM 肥大。通过胶内酶谱法评估 MMP 活性。用血管紧张素(ANG)-II(WT 和 APN 缺陷型(APN-KO)小鼠 3.2mg·kg(-1)·天(-1),14 天)诱导 ROS。测定心肌 MMPs、基质金属蛋白酶组织抑制剂(TIMP)、p-AMPK 和 p-ERK 蛋白表达。APN 显著降低 H₂O₂诱导的心肌细胞肥大,减少总蛋白、蛋白合成、ANF 和 BNP 表达。APN 还显著降低 H₂O₂诱导的 MMP-9 和 MMP-2 活性。APN 显著增加非刺激和 H₂O₂处理的 ARVM 中的 p-AMPK。APN 预处理可消除 H₂O₂诱导的 p-ERK 活性和 NF-κB 活性。ANG II 显著降低体内 APN-KO 与 WT 小鼠心肌中的 p-AMPK,增加 p-ERK 表达。ANG II 输注增强 APN-KO 与 WT 小鼠的心脏纤维化和 MMP-2-to-TIMP-2 和 MMP-9-to-TIMP-1 比值。因此,APN 通过激活 AMPK 并抑制 ERK 信号和 NF-κB 活性来抑制 ROS 诱导的心肌细胞重塑。APN 对 ROS 的作用最终对 MMP 表达的影响,定义了 APN 对 ROS 诱导的心脏重塑的保护作用。

相似文献

1
Adiponectin mediates cardioprotection in oxidative stress-induced cardiac myocyte remodeling.
Am J Physiol Heart Circ Physiol. 2011 Sep;301(3):H984-93. doi: 10.1152/ajpheart.00428.2011. Epub 2011 Jun 10.
2
Adiponectin modulates oxidative stress-induced autophagy in cardiomyocytes.
PLoS One. 2013 Jul 19;8(7):e68697. doi: 10.1371/journal.pone.0068697. Print 2013.
3
Adiponectin Upregulates MiR-133a in Cardiac Hypertrophy through AMPK Activation and Reduced ERK1/2 Phosphorylation.
PLoS One. 2016 Feb 4;11(2):e0148482. doi: 10.1371/journal.pone.0148482. eCollection 2016.
4
Puerarin inhibits angiotensin II-induced cardiac hypertrophy via the redox-sensitive ERK1/2, p38 and NF-κB pathways.
Acta Pharmacol Sin. 2014 Apr;35(4):463-75. doi: 10.1038/aps.2013.185. Epub 2014 Mar 10.
6
CD38 promotes angiotensin II-induced cardiac hypertrophy.
J Cell Mol Med. 2017 Aug;21(8):1492-1502. doi: 10.1111/jcmm.13076. Epub 2017 Mar 12.
7
Angiotensin II stimulates cardiac fibroblast migration via the differential regulation of matrixins and RECK.
J Mol Cell Cardiol. 2013 Dec;65:9-18. doi: 10.1016/j.yjmcc.2013.09.015. Epub 2013 Oct 2.
9
Arbutin Attenuates Isoproterenol-Induced Cardiac Hypertrophy by Inhibiting TLR-4/NF-κB Pathway in Mice.
Cardiovasc Toxicol. 2020 Jun;20(3):235-248. doi: 10.1007/s12012-019-09548-3.
10
CIKS (Act1 or TRAF3IP2) mediates Angiotensin-II-induced Interleukin-18 expression, and Nox2-dependent cardiomyocyte hypertrophy.
J Mol Cell Cardiol. 2012 Jul;53(1):113-24. doi: 10.1016/j.yjmcc.2012.04.009. Epub 2012 Apr 26.

引用本文的文献

2
The change of epicardial adipose tissue characteristics and vulnerability for atrial fibrillation upon drastic weight loss.
Adipocyte. 2024 Dec;13(1):2395565. doi: 10.1080/21623945.2024.2395565. Epub 2024 Sep 9.
3
The role of oxidative stress in aortic dissection: a potential therapeutic target.
Front Cardiovasc Med. 2024 Jul 12;11:1410477. doi: 10.3389/fcvm.2024.1410477. eCollection 2024.
4
Prediction of cardiac death in patients with hypertrophic cardiomyopathy using plasma adipokine levels.
Nutr Metab Cardiovasc Dis. 2024 Jun;34(6):1352-1360. doi: 10.1016/j.numecd.2024.01.017. Epub 2024 Jan 18.
5
Adiponectin and metabolic cardiovascular diseases: Therapeutic opportunities and challenges.
Genes Dis. 2022 Nov 17;10(4):1525-1536. doi: 10.1016/j.gendis.2022.10.018. eCollection 2023 Jul.
6
Promising Therapeutic Treatments for Cardiac Fibrosis: Herbal Plants and Their Extracts.
Cardiol Ther. 2023 Sep;12(3):415-443. doi: 10.1007/s40119-023-00319-4. Epub 2023 May 29.
7
Short-Chain Fatty Acids in Gut-Heart Axis: Their Role in the Pathology of Heart Failure.
J Pers Med. 2022 Nov 1;12(11):1805. doi: 10.3390/jpm12111805.
9
Role of adiponectin in osteoarthritis.
Front Cell Dev Biol. 2022 Sep 8;10:992764. doi: 10.3389/fcell.2022.992764. eCollection 2022.
10
Sex-specific phenotypes in the aging mouse heart and consequences for chronic fibrosis.
Am J Physiol Heart Circ Physiol. 2022 Aug 1;323(2):H285-H300. doi: 10.1152/ajpheart.00078.2022. Epub 2022 Jun 17.

本文引用的文献

1
AFos inhibits phenylephrine-mediated contractile dysfunction by altering phospholamban phosphorylation.
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1719-26. doi: 10.1152/ajpheart.00937.2009. Epub 2010 Apr 2.
2
Effects of adiponectin deficiency on structural and metabolic remodeling in mice subjected to pressure overload.
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1639-45. doi: 10.1152/ajpheart.00957.2009. Epub 2010 Mar 26.
3
Molecular targets and regulators of cardiac hypertrophy.
Pharmacol Res. 2010 Apr;61(4):269-80. doi: 10.1016/j.phrs.2009.11.012. Epub 2009 Dec 5.
4
Adiponectin deficiency, diastolic dysfunction, and diastolic heart failure.
Endocrinology. 2010 Jan;151(1):322-31. doi: 10.1210/en.2009-0806. Epub 2009 Oct 22.
6
Cardioprotective effect of adiponectin is partially mediated by its AMPK-independent antinitrative action.
Am J Physiol Endocrinol Metab. 2009 Aug;297(2):E384-91. doi: 10.1152/ajpendo.90975.2008. Epub 2009 May 26.
7
Crocetin protects against cardiac hypertrophy by blocking MEK-ERK1/2 signalling pathway.
J Cell Mol Med. 2009 May;13(5):909-25. doi: 10.1111/j.1582-4934.2008.00620.x. Epub 2008 Dec 24.
8
Activation of MMP-2 as a key event in oxidative stress injury to the heart.
Front Biosci (Landmark Ed). 2009 Jan 1;14(2):699-716. doi: 10.2741/3274.
9
Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling.
Cardiovasc Res. 2009 Apr 1;82(1):9-20. doi: 10.1093/cvr/cvp031. Epub 2009 Jan 29.
10
Oxidative stress and left ventricular remodelling after myocardial infarction.
Cardiovasc Res. 2009 Feb 15;81(3):457-64. doi: 10.1093/cvr/cvn335. Epub 2008 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验