Suppr超能文献

儿科糖尿病登记系统:当小步前进并不够时。

Pediatric diabetes registries: when baby steps are not enough.

作者信息

Malone Chad, Kennedy Gary D

机构信息

RemedyMD, Sandy, Utah, USA.

出版信息

J Diabetes Sci Technol. 2011 May 1;5(3):571-8. doi: 10.1177/193229681100500311.

Abstract

Effective diabetes research relies on pattern recognition. Although information technology (IT) has been used to aid researchers in recognizing patterns, there are still barriers to effective data collection, analysis, and collaboration inherent in using outdated methods and technology designed to fulfill clinical, not research, purposes. This article discusses seven problems with current research and outlines a solution in which innovative IT can be harnessed to overcome each problem, resulting in better research outcomes. New IT solutions on the market, such as meta-registries, are designed specifically to handle the complex data collection and analysis problems associated with diabetes research. A meta-registry with an ontology automatically harmonizes data from disparate sources, allowing researchers to devote their time to pattern recognition. With all essential data centralized and harmonized, researchers are also provided with a more complete view of each patient or research subject. When researchers can view and report across all data types at the same time, they are able to discover patterns and associations that are indistinguishable using traditional methodologies. This capability proves extremely beneficial, particularly for multifactorial disease research such as diabetes research.

摘要

有效的糖尿病研究依赖于模式识别。尽管信息技术(IT)已被用于帮助研究人员识别模式,但使用旨在满足临床而非研究目的的过时方法和技术,在有效的数据收集、分析和协作方面仍然存在障碍。本文讨论了当前研究中的七个问题,并概述了一种解决方案,即利用创新的信息技术来克服每个问题,从而产生更好的研究成果。市场上的新IT解决方案,如元注册库,专门设计用于处理与糖尿病研究相关的复杂数据收集和分析问题。具有本体的元注册库会自动协调来自不同来源的数据,使研究人员能够将时间投入到模式识别中。所有重要数据集中并协调后,研究人员还能更全面地了解每个患者或研究对象。当研究人员能够同时查看和报告所有数据类型时,他们就能发现使用传统方法无法区分的模式和关联。这一能力被证明极具益处,尤其对于像糖尿病研究这样的多因素疾病研究。

相似文献

1
Pediatric diabetes registries: when baby steps are not enough.
J Diabetes Sci Technol. 2011 May 1;5(3):571-8. doi: 10.1177/193229681100500311.
2
Disease registries on the nationwide health information network.
J Diabetes Sci Technol. 2011 May 1;5(3):535-42. doi: 10.1177/193229681100500308.
3
Design and development of a web-based Saudi National Diabetes Registry.
J Diabetes Sci Technol. 2010 Nov 1;4(6):1574-82. doi: 10.1177/193229681000400635.
4
Building a diabetes screening population data repository using electronic medical records.
J Diabetes Sci Technol. 2011 May 1;5(3):514-22. doi: 10.1177/193229681100500306.
5
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
6
Critical features for a successful implementation of a diabetes registry.
Diabetes Technol Ther. 2005 Dec;7(6):958-67. doi: 10.1089/dia.2005.7.958.
8
9
[CroDiab NET--electronic diabetes registry].
Acta Med Croatica. 2005;59(3):185-9.
10
Interventions using pediatric diabetes registry data for quality improvement: A systematic review.
Pediatr Diabetes. 2018 Nov;19(7):1249-1256. doi: 10.1111/pedi.12699. Epub 2018 Jun 25.

引用本文的文献

1
Establishing the Saudi pediatric and youth diabetes registry: initial data and challenges.
Sudan J Paediatr. 2024;24(1):10-20. doi: 10.24911/SJP.106-106-1715756287.

本文引用的文献

2
Identifying patterns of immune-related disease: use in disease prevention and management.
World J Pediatr. 2010 May;6(2):111-8. doi: 10.1007/s12519-010-0026-1. Epub 2010 May 21.
3
International efforts to develop biospecimen best practices.
Cancer Epidemiol Biomarkers Prev. 2010 Apr;19(4):912-5. doi: 10.1158/1055-9965.EPI-10-0058. Epub 2010 Mar 16.
4
Technology and the issue of cost/benefit in diabetes.
Diabetes Metab Res Rev. 2009 Sep;25 Suppl 1:S34-44. doi: 10.1002/dmrr.986.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验