Malone Chad, Kennedy Gary D
RemedyMD, Sandy, Utah, USA.
J Diabetes Sci Technol. 2011 May 1;5(3):571-8. doi: 10.1177/193229681100500311.
Effective diabetes research relies on pattern recognition. Although information technology (IT) has been used to aid researchers in recognizing patterns, there are still barriers to effective data collection, analysis, and collaboration inherent in using outdated methods and technology designed to fulfill clinical, not research, purposes. This article discusses seven problems with current research and outlines a solution in which innovative IT can be harnessed to overcome each problem, resulting in better research outcomes. New IT solutions on the market, such as meta-registries, are designed specifically to handle the complex data collection and analysis problems associated with diabetes research. A meta-registry with an ontology automatically harmonizes data from disparate sources, allowing researchers to devote their time to pattern recognition. With all essential data centralized and harmonized, researchers are also provided with a more complete view of each patient or research subject. When researchers can view and report across all data types at the same time, they are able to discover patterns and associations that are indistinguishable using traditional methodologies. This capability proves extremely beneficial, particularly for multifactorial disease research such as diabetes research.
有效的糖尿病研究依赖于模式识别。尽管信息技术(IT)已被用于帮助研究人员识别模式,但使用旨在满足临床而非研究目的的过时方法和技术,在有效的数据收集、分析和协作方面仍然存在障碍。本文讨论了当前研究中的七个问题,并概述了一种解决方案,即利用创新的信息技术来克服每个问题,从而产生更好的研究成果。市场上的新IT解决方案,如元注册库,专门设计用于处理与糖尿病研究相关的复杂数据收集和分析问题。具有本体的元注册库会自动协调来自不同来源的数据,使研究人员能够将时间投入到模式识别中。所有重要数据集中并协调后,研究人员还能更全面地了解每个患者或研究对象。当研究人员能够同时查看和报告所有数据类型时,他们就能发现使用传统方法无法区分的模式和关联。这一能力被证明极具益处,尤其对于像糖尿病研究这样的多因素疾病研究。