Suppr超能文献

定量分析大肠杆菌中重组蛋白生产过程中的代谢限制。

Quantification of metabolic limitations during recombinant protein production in Escherichia coli.

机构信息

Laboratory of Chemical Biotechnology, TU Dortmund University, Emil-Figge-Strasse 66, Dortmund, Germany.

出版信息

J Biotechnol. 2011 Sep 10;155(2):178-84. doi: 10.1016/j.jbiotec.2011.06.016. Epub 2011 Jun 23.

Abstract

Escherichia coli is one of the major microorganisms for recombinant protein production because it has been best characterized in terms of molecular genetics and physiology, and because of the availability of various expression vectors and strains. The synthesis of proteins is one of the most energy consuming processes in the cell, with the result that cellular energy supply may become critical. Indeed, the so called metabolic burden of recombinant protein synthesis was reported to cause alterations in the operation of the host's central carbon metabolism. To quantify these alterations in E. coli metabolism in dependence of the rate of recombinant protein production, (13)C-tracer-based metabolic flux analysis in differently induced cultures was used. To avoid dilution of the (13)C-tracer signal by the culture history, the recombinant protein produced was used as a flux probe, i.e., as a read out of intracellular flux distributions. In detail, an increase in the generation rate rising from 36 mmol(ATP)g(CDW)(-1)h(-1) for the reference strain to 45 mmol(ATP)g(CDW)(-1)h(-1) for the highest yielding strain was observed during batch cultivation. Notably, the flux through the TCA cycle was rather constant at 2.5±0.1 mmol g(CDW)(-1)h(-1), hence was independent of the induced strength for gene expression. E. coli compensated for the additional energy demand of recombinant protein synthesis by reducing the biomass formation to almost 60%, resulting in excess NADPH. Speculative, this excess NADPH was converted to NADH via the soluble transhydrogenase and subsequently used for ATP generation in the electron transport chain. In this study, the metabolic burden was quantified by the biomass yield on ATP, which constantly decreased from 11.7g(CDW)mmol(ATP)(-1) for the reference strain to 4.9g(CDW)mmol(ATP)(-1) for the highest yielding strain. The insights into the operation of the metabolism of E. coli during recombinant protein production might guide the optimization of microbial hosts and fermentation conditions.

摘要

大肠杆菌是用于重组蛋白生产的主要微生物之一,因为它在分子遗传学和生理学方面得到了最好的描述,并且因为有各种表达载体和菌株可用。蛋白质的合成是细胞中最耗能的过程之一,结果细胞的能量供应可能变得至关重要。事实上,据报道,重组蛋白合成的所谓代谢负担会导致宿主中央碳代谢的运转发生改变。为了根据重组蛋白生产的速率定量研究大肠杆菌代谢的这些变化,使用了基于(13)C 示踪剂的不同诱导培养物中的代谢通量分析。为了避免培养历史稀释(13)C 示踪信号,所产生的重组蛋白被用作通量探针,即作为细胞内通量分布的读出。详细地,在分批培养过程中,观察到从参考菌株的 36mmol(ATP)g(CDW)(-1)h(-1)的生成速率增加到最高产菌株的 45mmol(ATP)g(CDW)(-1)h(-1)。值得注意的是,TCA 循环的通量相当恒定,为 2.5±0.1mmol g(CDW)(-1)h(-1),因此与基因表达的诱导强度无关。大肠杆菌通过将生物量形成减少到几乎 60%来补偿重组蛋白合成的额外能量需求,导致 NADPH 过剩。推测,这种多余的 NADPH 通过可溶性转氢酶转化为 NADH,然后在电子传递链中用于 ATP 的生成。在这项研究中,通过生物量对 ATP 的产率来量化代谢负担,该产率从参考菌株的 11.7g(CDW)mmol(ATP)(-1)持续降低到最高产菌株的 4.9g(CDW)mmol(ATP)(-1)。对大肠杆菌在重组蛋白生产过程中代谢运作的深入了解可能指导微生物宿主和发酵条件的优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验