Suppr超能文献

G 蛋白信号转导调节因子及其 Gα 底物:作为药物发现靶点的前景与挑战。

Regulators of G-protein signaling and their Gα substrates: promises and challenges in their use as drug discovery targets.

机构信息

Department of Pharmacology, UNC Neuroscience Center, UNC School of Medicine, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Suite 4010, Chapel Hill, NC 27599-7365, USA.

出版信息

Pharmacol Rev. 2011 Sep;63(3):728-49. doi: 10.1124/pr.110.003038. Epub 2011 Jul 7.

Abstract

Because G-protein coupled receptors (GPCRs) continue to represent excellent targets for the discovery and development of small-molecule therapeutics, it is posited that additional protein components of the signal transduction pathways emanating from activated GPCRs themselves are attractive as drug discovery targets. This review considers the drug discovery potential of two such components: members of the "regulators of G-protein signaling" (RGS protein) superfamily, as well as their substrates, the heterotrimeric G-protein α subunits. Highlighted are recent advances, stemming from mouse knockout studies and the use of "RGS-insensitivity" and fast-hydrolysis mutations to Gα, in our understanding of how RGS proteins selectively act in (patho)physiologic conditions controlled by GPCR signaling and how they act on the nucleotide cycling of heterotrimeric G-proteins in shaping the kinetics and sensitivity of GPCR signaling. Progress is documented regarding recent activities along the path to devising screening assays and chemical probes for the RGS protein target, not only in pursuits of inhibitors of RGS domain-mediated acceleration of Gα GTP hydrolysis but also to embrace the potential of finding allosteric activators of this RGS protein action. The review concludes in considering the Gα subunit itself as a drug target, as brought to focus by recent reports of activating mutations to GNAQ and GNA11 in ocular (uveal) melanoma. We consider the likelihood of several strategies for antagonizing the function of these oncogene alleles and their gene products, including the use of RGS proteins with Gα(q) selectivity.

摘要

由于 G 蛋白偶联受体 (GPCR) 仍然是发现和开发小分子治疗药物的极佳靶点,因此推测源自激活的 GPCR 本身的信号转导途径的其他蛋白质成分作为药物发现靶点具有吸引力。这篇综述考虑了两种此类成分的药物发现潜力:“G 蛋白信号转导调节剂”(RGS 蛋白) 超家族的成员,以及它们的底物,异三聚体 G 蛋白 α 亚基。突出显示的是最近的进展,源自小鼠敲除研究以及使用“RGS 不敏感”和快速水解突变对 Gα 的研究,这些进展使我们对 RGS 蛋白如何在受 GPCR 信号控制的 (病理)生理条件下选择性发挥作用以及它们如何作用于异三聚体 G 蛋白的核苷酸循环来塑造 GPCR 信号的动力学和敏感性有了更好的理解。在设计用于 RGS 蛋白靶标的筛选测定和化学探针的过程中,记录了沿着这条道路取得的进展,不仅是为了寻找 RGS 结构域介导的 Gα GTP 水解加速的抑制剂,而且还为发现这种 RGS 蛋白作用的别构激活剂的潜力做好准备。综述以最近报道的眼 (葡萄膜) 黑素瘤中 GNAQ 和 GNA11 的激活突变为焦点,考虑了将 Gα 亚基本身作为药物靶标的可能性。我们考虑了几种拮抗这些致癌基因等位基因及其基因产物功能的策略的可能性,包括使用具有 Gα(q) 选择性的 RGS 蛋白。

相似文献

1
Regulators of G-protein signaling and their Gα substrates: promises and challenges in their use as drug discovery targets.
Pharmacol Rev. 2011 Sep;63(3):728-49. doi: 10.1124/pr.110.003038. Epub 2011 Jul 7.
2
The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits.
Int J Biol Sci. 2005;1(2):51-66. doi: 10.7150/ijbs.1.51. Epub 2005 Apr 1.
4
Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits.
Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6457-62. doi: 10.1073/pnas.0801508105. Epub 2008 Apr 23.
7
Structural determinants of G-protein alpha subunit selectivity by regulator of G-protein signaling 2 (RGS2).
J Biol Chem. 2009 Jul 17;284(29):19402-11. doi: 10.1074/jbc.M109.024711. Epub 2009 May 28.
8
Fluorescence-based assays for RGS box function.
Methods Enzymol. 2004;389:56-71. doi: 10.1016/S0076-6879(04)89004-9.
9
G protein activation without a GEF in the plant kingdom.
PLoS Genet. 2012 Jun;8(6):e1002756. doi: 10.1371/journal.pgen.1002756. Epub 2012 Jun 28.

引用本文的文献

1
3
An endothelial specific mouse model for the capillary malformation mutation Gnaq p.R183Q.
Angiogenesis. 2025 Jun 11;28(3):33. doi: 10.1007/s10456-025-09986-4.
4
Cyclic peptide inhibitors function as molecular glues to stabilize Gq/11 heterotrimers.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2418398122. doi: 10.1073/pnas.2418398122. Epub 2025 May 7.
5
Role of RGS17 in cisplatin-induced cochlear inflammation and ototoxicity via caspase-3 activation.
Front Immunol. 2025 Feb 21;16:1470625. doi: 10.3389/fimmu.2025.1470625. eCollection 2025.
7
Construction of a prognostic risk model for uveal melanoma based on immune-related long noncoding RNA.
Medicine (Baltimore). 2024 Sep 6;103(36):e39385. doi: 10.1097/MD.0000000000039385.
9
Investigation of the pan-cancer property of FNDC1 and its molecular mechanism to promote lung adenocarcinoma metastasis.
Transl Oncol. 2024 Jun;44:101953. doi: 10.1016/j.tranon.2024.101953. Epub 2024 Apr 10.
10
Phosphorylation of RGS16 at Tyr168 promote HBeAg-mediated macrophage activation by ERK pathway to accelerate liver injury.
J Mol Med (Berl). 2024 Feb;102(2):257-272. doi: 10.1007/s00109-023-02405-5. Epub 2023 Dec 23.

本文引用的文献

1
A nanomolar-potency small molecule inhibitor of regulator of G-protein signaling proteins.
Biochemistry. 2011 Apr 19;50(15):3181-92. doi: 10.1021/bi1019622. Epub 2011 Mar 29.
2
Molecular basis of a novel oncogenic mutation in GNAO1.
Oncogene. 2011 Jun 9;30(23):2691-6. doi: 10.1038/onc.2010.645. Epub 2011 Feb 14.
3
Mutations in GNA11 in uveal melanoma.
N Engl J Med. 2010 Dec 2;363(23):2191-9. doi: 10.1056/NEJMoa1000584. Epub 2010 Nov 17.
5
Kinetic scaffolding mediated by a phospholipase C-beta and Gq signaling complex.
Science. 2010 Nov 12;330(6006):974-80. doi: 10.1126/science.1193438. Epub 2010 Oct 21.
6
Alterations in metabotropic glutamate receptor 1α and regulator of G protein signaling 4 in the prefrontal cortex in schizophrenia.
Am J Psychiatry. 2010 Dec;167(12):1489-98. doi: 10.1176/appi.ajp.2010.10030318. Epub 2010 Oct 1.
7
RGS6/Gβ5 complex accelerates IKACh gating kinetics in atrial myocytes and modulates parasympathetic regulation of heart rate.
Circ Res. 2010 Nov 26;107(11):1350-4. doi: 10.1161/CIRCRESAHA.110.224212. Epub 2010 Sep 30.
8
RGS6, a modulator of parasympathetic activation in heart.
Circ Res. 2010 Nov 26;107(11):1345-9. doi: 10.1161/CIRCRESAHA.110.224220. Epub 2010 Sep 23.
9
RGS/Gi2alpha interactions modulate platelet accumulation and thrombus formation at sites of vascular injury.
Blood. 2010 Dec 23;116(26):6092-100. doi: 10.1182/blood-2010-05-283846. Epub 2010 Sep 17.
10
Renal actions of RGS2 control blood pressure.
J Am Soc Nephrol. 2010 Nov;21(11):1847-51. doi: 10.1681/ASN.2009121306. Epub 2010 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验