Suppr超能文献

一种不依赖序列的分析方法,用于研究分子内 RNA G-四链体稳定性和拓扑结构的环长依赖性。

A sequence-independent analysis of the loop length dependence of intramolecular RNA G-quadruplex stability and topology.

机构信息

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.

出版信息

Biochemistry. 2011 Aug 23;50(33):7251-8. doi: 10.1021/bi200805j. Epub 2011 Jul 11.

Abstract

G-Quadruplexes are noncanonical nucleic acid secondary structures based on guanine association that are readily adopted by G-rich RNA and DNA sequences. Naturally occurring genomic G-quadruplex-forming sequences have functional roles in biology that are mediated through structure. To appreciate how this is achieved, an understanding of the likelihood of G-quadruplex formation and the structural features of the folded species under a defined set of conditions is informative. We previously systematically investigated the thermodynamic stability and folding topology of DNA G-quadruplexes and found a strong dependence of these properties on loop length and loop arrangement [Bugaut, A., and Balasubramanian, S. (2008) Biochemistry 47, 689-697]. Here we report on a complementary analysis of RNA G-quadruplexes using UV melting and circular dichroism spectroscopy that also serves as a comparison to the equivalent DNA G-quadruplex-forming sequences. We found that the thermodynamic stability of G-quadruplex RNA can be modulated by loop length while the overall structure is largely unaffected. The systematic design of our study also revealed subtle loop length dependencies in RNA G-quadruplex structure.

摘要

四链体是基于鸟嘌呤结合的非经典核酸二级结构,容易被富含鸟嘌呤的 RNA 和 DNA 序列采用。天然存在的基因组形成四链体的序列在生物学中具有功能作用,这些作用是通过结构介导的。为了理解这是如何实现的,了解四链体形成的可能性以及在一组定义条件下折叠物种的结构特征是有帮助的。我们之前系统地研究了 DNA 四链体的热力学稳定性和折叠拓扑结构,发现这些性质强烈依赖于环长和环排列[Bugaut,A.,和 Balasubramanian,S.(2008)生物化学 47,689-697]。在这里,我们使用紫外熔融和圆二色性光谱法报告了 RNA 四链体的互补分析,这也可作为与等效的 DNA 形成四链体的序列的比较。我们发现,四链体 RNA 的热力学稳定性可以通过环长来调节,而整体结构则基本不受影响。我们研究的系统设计还揭示了 RNA 四链体结构中微妙的环长依赖性。

相似文献

1
A sequence-independent analysis of the loop length dependence of intramolecular RNA G-quadruplex stability and topology.
Biochemistry. 2011 Aug 23;50(33):7251-8. doi: 10.1021/bi200805j. Epub 2011 Jul 11.
3
Loop-length-dependent folding of G-quadruplexes.
J Am Chem Soc. 2004 Dec 22;126(50):16405-15. doi: 10.1021/ja045154j.
4
Loop permutation affects the topology and stability of G-quadruplexes.
Nucleic Acids Res. 2018 Oct 12;46(18):9264-9275. doi: 10.1093/nar/gky757.
5
Volumetric contributions of loop regions of G-quadruplex DNA to the formation of the tertiary structure.
Biophys Chem. 2017 Dec;231:146-154. doi: 10.1016/j.bpc.2017.02.001. Epub 2017 Feb 6.
6
A thermodynamic overview of naturally occurring intramolecular DNA quadruplexes.
Nucleic Acids Res. 2008 Oct;36(17):5610-22. doi: 10.1093/nar/gkn543. Epub 2008 Aug 30.
8
High-affinity homologous peptide nucleic acid probes for targeting a quadruplex-forming sequence from a MYC promoter element.
Biochemistry. 2007 Sep 18;46(37):10433-43. doi: 10.1021/bi700854r. Epub 2007 Aug 24.
9
Effect of flanking bases on quadruplex stability and Watson-Crick duplex competition.
FEBS J. 2009 Jul;276(13):3628-40. doi: 10.1111/j.1742-4658.2009.07082.x. Epub 2009 May 28.
10
Effects of Central Loop Length and Metal Ions on the Thermal Stability of G-Quadruplexes.
Molecules. 2019 May 15;24(10):1863. doi: 10.3390/molecules24101863.

引用本文的文献

3
Beyond Structure: Methylation Fine-Tunes Stability and Folding Kinetics of bcl2Mid G-Quadruplex.
Angew Chem Int Ed Engl. 2025 Jun 10;64(24):e202507544. doi: 10.1002/anie.202507544. Epub 2025 Apr 16.
5
A Compendium of G-Flipon Biological Functions That Have Experimental Validation.
Int J Mol Sci. 2024 Sep 25;25(19):10299. doi: 10.3390/ijms251910299.
6
Novel Therapeutic Horizons: Targeting in Parkinson's Disease.
Biomolecules. 2024 Aug 6;14(8):949. doi: 10.3390/biom14080949.
7
Mechanical Stability and Unfolding Pathways of Parallel Tetrameric G-Quadruplexes Probed by Pulling Simulations.
J Chem Inf Model. 2024 May 13;64(9):3896-3911. doi: 10.1021/acs.jcim.4c00227. Epub 2024 Apr 17.
9
RNA G-quadruplex folding is a multi-pathway process driven by conformational entropy.
Nucleic Acids Res. 2024 Jan 11;52(1):87-100. doi: 10.1093/nar/gkad1065.
10
Complex CDKL5 translational regulation and its potential role in CDKL5 deficiency disorder.
Front Cell Neurosci. 2023 Oct 30;17:1231493. doi: 10.3389/fncel.2023.1231493. eCollection 2023.

本文引用的文献

1
Structure of human telomeric DNA in crowded solution.
J Am Chem Soc. 2011 Jun 29;133(25):9824-33. doi: 10.1021/ja200786q. Epub 2011 Jun 6.
2
Structural basis of telomeric RNA quadruplex--acridine ligand recognition.
J Am Chem Soc. 2011 Mar 2;133(8):2721-8. doi: 10.1021/ja109767y. Epub 2011 Feb 3.
3
An RNA G-quadruplex is essential for cap-independent translation initiation in human VEGF IRES.
J Am Chem Soc. 2010 Dec 22;132(50):17831-9. doi: 10.1021/ja106287x. Epub 2010 Nov 24.
5
Telomeric repeat-containing RNA structure in living cells.
Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14579-84. doi: 10.1073/pnas.1001177107. Epub 2010 Aug 2.
6
How long is too long? Effects of loop size on G-quadruplex stability.
Nucleic Acids Res. 2010 Nov;38(21):7858-68. doi: 10.1093/nar/gkq639. Epub 2010 Jul 26.
7
5'-UTR G-quadruplex structures acting as translational repressors.
Nucleic Acids Res. 2010 Nov;38(20):7022-36. doi: 10.1093/nar/gkq557. Epub 2010 Jun 22.
8
A G-quadruplex structure within the 5'-UTR of TRF2 mRNA represses translation in human cells.
Nucleic Acids Res. 2010 Nov;38(20):7187-98. doi: 10.1093/nar/gkq563. Epub 2010 Jun 22.
9
Small molecule-mediated inhibition of translation by targeting a native RNA G-quadruplex.
Org Biomol Chem. 2010 Jun 21;8(12):2771-6. doi: 10.1039/c002418j. Epub 2010 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验