Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.
Hum Brain Mapp. 2012 Aug;33(8):1914-28. doi: 10.1002/hbm.21333. Epub 2011 Jul 18.
Connectivity analyses and computational modeling of human brain function from fMRI data frequently require the specification of regions of interests (ROIs). Several analyses have relied on atlases derived from anatomical or cyto-architectonic boundaries to specify these ROIs, yet the suitability of atlases for resting state functional connectivity (FC) studies has yet to be established. This article introduces a data-driven method for generating an ROI atlas by parcellating whole brain resting-state fMRI data into spatially coherent regions of homogeneous FC. Several clustering statistics are used to compare methodological trade-offs as well as determine an adequate number of clusters. Additionally, we evaluate the suitability of the parcellation atlas against four ROI atlases (Talairach and Tournoux, Harvard-Oxford, Eickoff-Zilles, and Automatic Anatomical Labeling) and a random parcellation approach. The evaluated anatomical atlases exhibit poor ROI homogeneity and do not accurately reproduce FC patterns present at the voxel scale. In general, the proposed functional and random parcellations perform equivalently for most of the metrics evaluated. ROI size and hence the number of ROIs in a parcellation had the greatest impact on their suitability for FC analysis. With 200 or fewer ROIs, the resulting parcellations consist of ROIs with anatomic homology, and thus offer increased interpretability. Parcellation results containing higher numbers of ROIs (600 or 1,000) most accurately represent FC patterns present at the voxel scale and are preferable when interpretability can be sacrificed for accuracy. The resulting atlases and clustering software have been made publicly available at: http://www.nitrc.org/projects/cluster_roi/.
从 fMRI 数据中进行人类大脑功能的连通性分析和计算建模通常需要指定感兴趣区域 (ROI)。有几项分析依赖于源自解剖学或细胞构筑学边界的图谱来指定这些 ROI,但图谱是否适合静息状态功能连接 (FC) 研究尚未确定。本文介绍了一种数据驱动的方法,通过将全脑静息态 fMRI 数据分割成具有同质 FC 的空间连贯区域来生成 ROI 图谱。使用了几种聚类统计来比较方法上的权衡,并确定合适的聚类数量。此外,我们评估了该分割图谱相对于四个 ROI 图谱(Talairach 和 Tournoux、哈佛-牛津、Eickoff-Zilles 和自动解剖标记)和随机分割方法的适用性。评估的解剖图谱表现出较差的 ROI 同质性,并且不能准确再现体素尺度上存在的 FC 模式。一般来说,所提出的功能和随机分割在评估的大多数指标上表现相当。ROI 大小,即分割中的 ROI 数量,对其进行 FC 分析的适用性有最大的影响。对于 200 个或更少的 ROI,得到的分割由具有解剖同源性的 ROI 组成,因此提供了更高的可解释性。包含更多 ROI(600 或 1000)的分割结果最能准确表示体素尺度上存在的 FC 模式,并且当可解释性可以为准确性牺牲时更可取。生成的图谱和聚类软件已在以下网址公开提供:http://www.nitrc.org/projects/cluster_roi/。