Suppr超能文献

基于空间约束谱聚类生成的全脑 fMRI 图谱。

A whole brain fMRI atlas generated via spatially constrained spectral clustering.

机构信息

Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA.

出版信息

Hum Brain Mapp. 2012 Aug;33(8):1914-28. doi: 10.1002/hbm.21333. Epub 2011 Jul 18.

Abstract

Connectivity analyses and computational modeling of human brain function from fMRI data frequently require the specification of regions of interests (ROIs). Several analyses have relied on atlases derived from anatomical or cyto-architectonic boundaries to specify these ROIs, yet the suitability of atlases for resting state functional connectivity (FC) studies has yet to be established. This article introduces a data-driven method for generating an ROI atlas by parcellating whole brain resting-state fMRI data into spatially coherent regions of homogeneous FC. Several clustering statistics are used to compare methodological trade-offs as well as determine an adequate number of clusters. Additionally, we evaluate the suitability of the parcellation atlas against four ROI atlases (Talairach and Tournoux, Harvard-Oxford, Eickoff-Zilles, and Automatic Anatomical Labeling) and a random parcellation approach. The evaluated anatomical atlases exhibit poor ROI homogeneity and do not accurately reproduce FC patterns present at the voxel scale. In general, the proposed functional and random parcellations perform equivalently for most of the metrics evaluated. ROI size and hence the number of ROIs in a parcellation had the greatest impact on their suitability for FC analysis. With 200 or fewer ROIs, the resulting parcellations consist of ROIs with anatomic homology, and thus offer increased interpretability. Parcellation results containing higher numbers of ROIs (600 or 1,000) most accurately represent FC patterns present at the voxel scale and are preferable when interpretability can be sacrificed for accuracy. The resulting atlases and clustering software have been made publicly available at: http://www.nitrc.org/projects/cluster_roi/.

摘要

从 fMRI 数据中进行人类大脑功能的连通性分析和计算建模通常需要指定感兴趣区域 (ROI)。有几项分析依赖于源自解剖学或细胞构筑学边界的图谱来指定这些 ROI,但图谱是否适合静息状态功能连接 (FC) 研究尚未确定。本文介绍了一种数据驱动的方法,通过将全脑静息态 fMRI 数据分割成具有同质 FC 的空间连贯区域来生成 ROI 图谱。使用了几种聚类统计来比较方法上的权衡,并确定合适的聚类数量。此外,我们评估了该分割图谱相对于四个 ROI 图谱(Talairach 和 Tournoux、哈佛-牛津、Eickoff-Zilles 和自动解剖标记)和随机分割方法的适用性。评估的解剖图谱表现出较差的 ROI 同质性,并且不能准确再现体素尺度上存在的 FC 模式。一般来说,所提出的功能和随机分割在评估的大多数指标上表现相当。ROI 大小,即分割中的 ROI 数量,对其进行 FC 分析的适用性有最大的影响。对于 200 个或更少的 ROI,得到的分割由具有解剖同源性的 ROI 组成,因此提供了更高的可解释性。包含更多 ROI(600 或 1000)的分割结果最能准确表示体素尺度上存在的 FC 模式,并且当可解释性可以为准确性牺牲时更可取。生成的图谱和聚类软件已在以下网址公开提供:http://www.nitrc.org/projects/cluster_roi/。

相似文献

1
A whole brain fMRI atlas generated via spatially constrained spectral clustering.
Hum Brain Mapp. 2012 Aug;33(8):1914-28. doi: 10.1002/hbm.21333. Epub 2011 Jul 18.
2
A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.
Magn Reson Imaging. 2016 Feb;34(2):209-18. doi: 10.1016/j.mri.2015.10.036. Epub 2015 Oct 31.
3
AICHA: An atlas of intrinsic connectivity of homotopic areas.
J Neurosci Methods. 2015 Oct 30;254:46-59. doi: 10.1016/j.jneumeth.2015.07.013. Epub 2015 Jul 23.
4
Brain parcellation driven by dynamic functional connectivity better capture intrinsic network dynamics.
Hum Brain Mapp. 2021 Apr 1;42(5):1416-1433. doi: 10.1002/hbm.25303. Epub 2020 Dec 7.
5
Evaluation of atlas-based segmentation of hippocampi in healthy humans.
Magn Reson Imaging. 2009 Oct;27(8):1104-9. doi: 10.1016/j.mri.2009.01.008. Epub 2009 Mar 4.
6
Ant Colony Clustering for ROI Identification in Functional Magnetic Resonance Imaging.
Comput Intell Neurosci. 2019 Dec 26;2019:5259643. doi: 10.1155/2019/5259643. eCollection 2019.
8
Human Brain Atlases in Stroke Management.
Neuroinformatics. 2020 Oct;18(4):549-567. doi: 10.1007/s12021-020-09462-y.
9
Optimizing Connectivity-Driven Brain Parcellation Using Ensemble Clustering.
Brain Connect. 2020 May;10(4):183-194. doi: 10.1089/brain.2019.0722.
10
Using connectomics for predictive assessment of brain parcellations.
Neuroimage. 2021 Sep;238:118170. doi: 10.1016/j.neuroimage.2021.118170. Epub 2021 Jun 1.

引用本文的文献

1
Deep learning-based embedding of functional connectivity profiles for precision functional mapping.
Imaging Neurosci (Camb). 2025 Sep 3;3. doi: 10.1162/IMAG.a.129. eCollection 2025.
3
Voxel-Wise or Region-Wise Nuisance Regression for Functional Connectivity Analyses: Does It Matter?
Hum Brain Mapp. 2025 Aug 15;46(12):e70323. doi: 10.1002/hbm.70323.
5
Supervised brain node and network construction under voxel-level functional imaging.
Imaging Neurosci (Camb). 2025 Jun 26;3. doi: 10.1162/IMAG.a.56. eCollection 2025.
6
Direct segmentation of cortical cytoarchitectonic domains using ultra-high-resolution whole-brain diffusion MRI.
Imaging Neurosci (Camb). 2024 Dec 20;2. doi: 10.1162/imag_a_00393. eCollection 2024.
8
Influence of atlas-choice on age and time effects in large-scale brain networks in the context of healthy aging.
Imaging Neurosci (Camb). 2024 Apr 8;2. doi: 10.1162/imag_a_00127. eCollection 2024.
9
Translating phenotypic prediction models from big to small anatomical MRI data using meta-matching.
Imaging Neurosci (Camb). 2024 Aug 1;2. doi: 10.1162/imag_a_00251. eCollection 2024.
10
Connectome-based predictive modeling of handwriting and reading using task-evoked and resting-state functional connectivity.
iScience. 2025 Jul 7;28(8):113075. doi: 10.1016/j.isci.2025.113075. eCollection 2025 Aug 15.

本文引用的文献

1
Prediction of individual brain maturity using fMRI.
Science. 2010 Sep 10;329(5997):1358-61. doi: 10.1126/science.1194144.
2
Network modelling methods for FMRI.
Neuroimage. 2011 Jan 15;54(2):875-91. doi: 10.1016/j.neuroimage.2010.08.063. Epub 2010 Sep 15.
3
Broca's region: linking human brain functional connectivity data and non-human primate tracing anatomy studies.
Eur J Neurosci. 2010 Aug;32(3):383-98. doi: 10.1111/j.1460-9568.2010.07279.x. Epub 2010 Jul 21.
4
Everything you never wanted to know about circular analysis, but were afraid to ask.
J Cereb Blood Flow Metab. 2010 Sep;30(9):1551-7. doi: 10.1038/jcbfm.2010.86. Epub 2010 Jun 23.
5
Toward discovery science of human brain function.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4734-9. doi: 10.1073/pnas.0911855107. Epub 2010 Feb 22.
6
Graph-theory based parcellation of functional subunits in the brain from resting-state fMRI data.
Neuroimage. 2010 Apr 15;50(3):1027-35. doi: 10.1016/j.neuroimage.2009.12.119. Epub 2010 Jan 7.
7
Whole-brain anatomical networks: does the choice of nodes matter?
Neuroimage. 2010 Apr 15;50(3):970-83. doi: 10.1016/j.neuroimage.2009.12.027. Epub 2009 Dec 24.
8
Precuneus shares intrinsic functional architecture in humans and monkeys.
Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):20069-74. doi: 10.1073/pnas.0905314106. Epub 2009 Nov 10.
9
Disease state prediction from resting state functional connectivity.
Magn Reson Med. 2009 Dec;62(6):1619-28. doi: 10.1002/mrm.22159.
10
Correspondence of the brain's functional architecture during activation and rest.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5. doi: 10.1073/pnas.0905267106. Epub 2009 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验