School of Mathematical Science, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
Math Biosci. 2011 Nov;234(1):47-57. doi: 10.1016/j.mbs.2011.06.009. Epub 2011 Jul 19.
We consider a system of delay differential equations modeling the predator-prey ecoepidemic dynamics with a transmissible disease in the predator population. The time lag in the delay terms represents the predator gestation period. We analyze essential mathematical features of the proposed model such as local and global stability and in addition study the bifurcations arising in some selected situations. Threshold values for a few parameters determining the feasibility and stability conditions of some equilibria are discovered and similarly a threshold is identified for the disease to die out. The parameter thresholds under which the system admits a Hopf bifurcation are investigated both in the presence of zero and non-zero time lag. Numerical simulations support our theoretical analysis.
我们考虑了一个带有可传播疾病的捕食者-猎物生态流行病动力学的时滞微分方程系统。延迟项中的时滞代表了捕食者的妊娠期。我们分析了所提出模型的基本数学特征,如局部和全局稳定性,并在一些选定的情况下研究了分岔的出现。发现了几个参数的阈值,这些参数决定了一些平衡点的可行性和稳定性条件,同样也确定了疾病消失的阈值。在存在零和非零时滞的情况下,研究了系统允许 Hopf 分岔的参数阈值。数值模拟支持我们的理论分析。