Suppr超能文献

活大肠杆菌中 RNA 聚合酶的空间分布和扩散运动。

Spatial distribution and diffusive motion of RNA polymerase in live Escherichia coli.

机构信息

Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, WI 53706, USA.

出版信息

J Bacteriol. 2011 Oct;193(19):5138-46. doi: 10.1128/JB.00198-11. Epub 2011 Jul 22.

Abstract

By labeling the β' subunit of RNA polymerase (RNAP), we used fluorescence microscopy to study the spatial distribution and diffusive motion of RNAP in live Escherichia coli cells for the first time. With a 40-ms time resolution, the spatial distribution exhibits two or three narrow peaks of 300- to 600-nm full width at half-maximum that maintain their positions within 60 nm over 1 s. The intensity in these features is 20 to 30% of the total. Fluorescence recovery after photobleaching (FRAP) measures the diffusive motion of RNAP on the 1-μm length scale. Averaged over many cells, 53%±19% of the RNAP molecules were mobile on the 3-s timescale, with a mean apparent diffusion constant of 0.22±0.16 μm2-s(-1). The remaining 47% were immobile even on the 30-s timescale. We interpret the immobile fraction as arising from RNAP specifically bound to DNA, either actively transcribing or not. The diffusive motion of the mobile fraction (fmobile) probably involves both one-dimensional sliding during nonspecific binding to DNA and three-dimensional hopping between DNA strands. There is significant cell-to-cell heterogeneity in both DRNAP and fmobile.

摘要

通过对 RNA 聚合酶(RNAP)β'亚基进行标记,我们首次使用荧光显微镜研究了活大肠杆菌细胞中 RNAP 的空间分布和扩散运动。在 40 毫秒的时间分辨率下,空间分布呈现出两个或三个半峰全宽为 300-600nm 的狭窄峰,在 1 秒内保持在 60nm 以内的位置。这些特征的强度占总强度的 20-30%。光漂白荧光恢复(FRAP)测量了 RNAP 在 1μm 长度尺度上的扩散运动。在许多细胞的平均值中,53%±19%的 RNAP 分子在 3s 的时间尺度上是可移动的,平均表观扩散常数为 0.22±0.16μm2-s(-1)。其余 47%即使在 30s 的时间尺度上也是不动的。我们将不可移动的部分解释为 RNAP 特异性地与 DNA 结合,无论是正在活跃转录还是不转录。可移动部分的扩散运动(fmobile)可能涉及到在非特异性结合 DNA 时的一维滑动,以及 DNA 链之间的三维跳跃。DRNAP 和 fmobile 都存在显著的细胞间异质性。

相似文献

1
Spatial distribution and diffusive motion of RNA polymerase in live Escherichia coli.
J Bacteriol. 2011 Oct;193(19):5138-46. doi: 10.1128/JB.00198-11. Epub 2011 Jul 22.
4
Direct observation of one-dimensional diffusion and transcription by Escherichia coli RNA polymerase.
Biophys J. 1999 Oct;77(4):2284-94. doi: 10.1016/S0006-3495(99)77067-0.
5
Fast microscopical dissection of action scenes played by Escherichia coli RNA polymerase.
FEBS Lett. 2012 Sep 21;586(19):3187-92. doi: 10.1016/j.febslet.2012.06.033. Epub 2012 Jul 4.
6
The role of ω-subunit of Escherichia coli RNA polymerase in stress response.
Genes Cells. 2018 May;23(5):357-369. doi: 10.1111/gtc.12577. Epub 2018 Mar 15.
7
Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells.
Mol Microbiol. 2012 Jul;85(1):21-38. doi: 10.1111/j.1365-2958.2012.08081.x. Epub 2012 May 24.

引用本文的文献

1
RNA polymerase redistribution supports growth in E. coli strains with a minimal number of rRNA operons.
Nucleic Acids Res. 2023 Aug 25;51(15):8085-8101. doi: 10.1093/nar/gkad511.
2
Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria.
Microbiol Mol Biol Rev. 2020 Oct 28;84(4). doi: 10.1128/MMBR.00008-20. Print 2020 Nov 18.
3
Chromosome and plasmid-borne P promoters differ in sensitivity to critically low temperatures.
Sci Rep. 2019 Mar 14;9(1):4486. doi: 10.1038/s41598-019-39618-z.
4
Homeostasis of protein and mRNA concentrations in growing cells.
Nat Commun. 2018 Oct 29;9(1):4496. doi: 10.1038/s41467-018-06714-z.
5
Impact of Chromosomal Architecture on the Function and Evolution of Bacterial Genomes.
Front Microbiol. 2018 Aug 27;9:2019. doi: 10.3389/fmicb.2018.02019. eCollection 2018.
6
7
Ribonucleoprotein purification and characterization using RNA Mango.
RNA. 2017 Oct;23(10):1592-1599. doi: 10.1261/rna.062166.117. Epub 2017 Jul 26.
8
Single-molecule and super-resolution imaging of transcription in living bacteria.
Methods. 2017 May 1;120:103-114. doi: 10.1016/j.ymeth.2017.04.001. Epub 2017 Apr 13.
9
Colocalization of distant chromosomal loci in space in E. coli: a bacterial nucleolus.
Genes Dev. 2016 Oct 15;30(20):2272-2285. doi: 10.1101/gad.290312.116.
10
Dissecting the stochastic transcription initiation process in live Escherichia coli.
DNA Res. 2016 Jun;23(3):203-14. doi: 10.1093/dnares/dsw009. Epub 2016 Mar 28.

本文引用的文献

1
Entropy-based mechanism of ribosome-nucleoid segregation in E. coli cells.
Biophys J. 2011 Jun 8;100(11):2605-13. doi: 10.1016/j.bpj.2011.04.030.
2
Protein diffusion in the periplasm of E. coli under osmotic stress.
Biophys J. 2011 Jan 5;100(1):22-31. doi: 10.1016/j.bpj.2010.11.044.
3
Size dependence of protein diffusion in the cytoplasm of Escherichia coli.
J Bacteriol. 2010 Sep;192(18):4535-40. doi: 10.1128/JB.00284-10. Epub 2010 Jun 25.
4
Molecular sieving properties of the cytoplasm of Escherichia coli and consequences of osmotic stress.
Mol Microbiol. 2010 Jul 1;77(1):200-7. doi: 10.1111/j.1365-2958.2010.07201.x. Epub 2010 May 12.
5
Mobility of cytoplasmic, membrane, and DNA-binding proteins in Escherichia coli.
Biophys J. 2010 Feb 17;98(4):552-9. doi: 10.1016/j.bpj.2009.11.002.
7
Growth-rate-dependent partitioning of RNA polymerases in bacteria.
Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20245-50. doi: 10.1073/pnas.0804953105. Epub 2008 Dec 10.
8
Cytoplasmic protein mobility in osmotically stressed Escherichia coli.
J Bacteriol. 2009 Jan;191(1):231-7. doi: 10.1128/JB.00536-08. Epub 2008 Oct 24.
9
DNA dynamics vary according to macrodomain topography in the E. coli chromosome.
Mol Microbiol. 2008 Jun;68(6):1418-27. doi: 10.1111/j.1365-2958.2008.06239.x. Epub 2008 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验