Suppr超能文献

基于微尺度涡流的高通量大小基稀有细胞富集。

High-throughput size-based rare cell enrichment using microscale vortices.

机构信息

University of California, Los Angeles, California 90095, USA.

出版信息

Biomicrofluidics. 2011 Jun;5(2):22206. doi: 10.1063/1.3576780. Epub 2011 Jun 29.

Abstract

Cell isolation in designated regions or from heterogeneous samples is often required for many microfluidic cell-based assays. However, current techniques have either limited throughput or are incapable of viable off-chip collection. We present an innovative approach, allowing high-throughput and label-free cell isolation and enrichment from heterogeneous solution using cell size as a biomarker. The approach utilizes the irreversible migration of particles into microscale vortices, developed in parallel expansion-contraction trapping reservoirs, as the cell isolation mechanism. We empirically determined the critical particle∕cell diameter D(crt) and the operational flow rate above which trapping of cells∕particles in microvortices is initiated. Using this approach we successfully separated larger cancer cells spiked in blood from the smaller blood cells with processing rates as high as 7.5×10(6) cells∕s. Viable long-term culture was established using cells collected off-chip, suggesting that the proposed technique would be useful for clinical and research applications in which in vitro culture is often desired. The presented technology improves on current technology by enriching cells based on size without clogging mechanical filters, employing only a simple single-layered microfluidic device and processing cell solutions at the ml∕min scale.

摘要

在许多基于微流控的细胞分析中,通常需要在指定区域或从异质样本中分离细胞。然而,目前的技术要么通量有限,要么无法在片外进行可行的收集。我们提出了一种创新的方法,允许使用细胞大小作为生物标志物,从异质溶液中进行高通量和无标记的细胞分离和富集。该方法利用作为细胞分离机制的不可逆颗粒进入微尺度涡流的迁移,这些微尺度涡流是在平行扩展-收缩捕获储液器中开发的。我们通过实验确定了临界颗粒/细胞直径 D(crt)和操作流速,超过该流速就会开始在微涡流中捕获细胞/颗粒。使用这种方法,我们成功地从血液中的较小血细胞中分离出了掺入的较大癌细胞,处理速度高达 7.5×10(6)个细胞/s。通过在片外收集细胞建立了可行的长期培养,这表明所提出的技术将对临床和研究应用有用,因为这些应用通常需要体外培养。所提出的技术通过基于大小而不是通过堵塞机械过滤器来富集细胞,仅使用简单的单层微流控装置,并且以 ml∕min 的规模处理细胞溶液,从而改进了当前技术。

相似文献

1
High-throughput size-based rare cell enrichment using microscale vortices.
Biomicrofluidics. 2011 Jun;5(2):22206. doi: 10.1063/1.3576780. Epub 2011 Jun 29.
2
High throughput single-cell and multiple-cell micro-encapsulation.
J Vis Exp. 2012 Jun 15(64):e4096. doi: 10.3791/4096.
4
Label-free ferrohydrodynamic cell separation of circulating tumor cells.
Lab Chip. 2017 Sep 12;17(18):3097-3111. doi: 10.1039/c7lc00680b.
5
Microscale Laminar Vortices for High-Purity Extraction and Release of Circulating Tumor Cells.
Methods Mol Biol. 2017;1634:65-79. doi: 10.1007/978-1-4939-7144-2_5.
6
Deformability-based cell classification and enrichment using inertial microfluidics.
Lab Chip. 2011 Mar 7;11(5):912-20. doi: 10.1039/c0lc00595a. Epub 2011 Jan 27.
7
High efficiency vortex trapping of circulating tumor cells.
Biomicrofluidics. 2015 Dec 17;9(6):064116. doi: 10.1063/1.4937895. eCollection 2015 Nov.
8
A high-throughput microfluidic single-cell screening platform capable of selective cell extraction.
Lab Chip. 2015 Jun 7;15(11):2467-75. doi: 10.1039/c4lc01316f. Epub 2015 May 5.
9
Spatiotemporally controlled microvortices provide advanced microfluidic components.
Proc Natl Acad Sci U S A. 2024 Aug 13;121(33):e2306182121. doi: 10.1073/pnas.2306182121. Epub 2024 Aug 5.
10
Enhanced size-dependent trapping of particles using microvortices.
Microfluid Nanofluidics. 2013 Nov 1;15(5). doi: 10.1007/s10404-013-1176-y.

引用本文的文献

1
Effects of Shear and Extensional Stresses on Cells: Investigation in a Spiral Microchannel and Contraction-Expansion Arrays.
ACS Biomater Sci Eng. 2025 Jun 9;11(6):3249-3261. doi: 10.1021/acsbiomaterials.5c00555. Epub 2025 May 28.
2
Isolation Techniques of Micro/Nano-Scaled Species for Biomedical Applications.
Adv Sci (Weinh). 2025 Jul;12(26):e2414109. doi: 10.1002/advs.202414109. Epub 2025 May 24.
3
Constrained Volume Micro- and Nanoparticle Collection Methods in Microfluidic Systems.
Micromachines (Basel). 2024 May 25;15(6):699. doi: 10.3390/mi15060699.
4
Vortex sorting of rare particles/cells in microcavities: A review.
Biomicrofluidics. 2024 Apr 1;18(2):021504. doi: 10.1063/5.0174938. eCollection 2024 Mar.
5
Deciphering viscoelastic cell manipulation in rectangular microchannels.
Phys Fluids (1994). 2023 Oct;35(10):103117. doi: 10.1063/5.0167285. Epub 2023 Oct 13.
6
High-Efficiency Inertial Separation of Microparticles Using Elevated Columned Reservoirs and Vortex Technique for Lab-on-a-Chip Applications.
ACS Omega. 2023 Jul 25;8(31):28628-28639. doi: 10.1021/acsomega.3c03136. eCollection 2023 Aug 8.
8
Microfluidic techniques for isolation, formation, and characterization of circulating tumor cells and clusters.
APL Bioeng. 2022 Jul 15;6(3):031501. doi: 10.1063/5.0093806. eCollection 2022 Sep.
9
Geometric structure design of passive label-free microfluidic systems for biological micro-object separation.
Microsyst Nanoeng. 2022 Jun 6;8:62. doi: 10.1038/s41378-022-00386-y. eCollection 2022.
10

本文引用的文献

1
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).
Anal Chem. 1998 Dec 1;70(23):4974-84. doi: 10.1021/ac980656z.
2
Deformability-based cell classification and enrichment using inertial microfluidics.
Lab Chip. 2011 Mar 7;11(5):912-20. doi: 10.1039/c0lc00595a. Epub 2011 Jan 27.
3
Continuous scalable blood filtration device using inertial microfluidics.
Biotechnol Bioeng. 2010 Oct 1;107(2):302-11. doi: 10.1002/bit.22833.
4
Label-free cell separation and sorting in microfluidic systems.
Anal Bioanal Chem. 2010 Aug;397(8):3249-67. doi: 10.1007/s00216-010-3721-9. Epub 2010 Apr 25.
5
Fast and continuous plasma extraction from whole human blood based on expanding cell-free layer devices.
Biomed Microdevices. 2010 Jun;12(3):485-97. doi: 10.1007/s10544-010-9405-6.
6
Sheathless inertial cell ordering for extreme throughput flow cytometry.
Lab Chip. 2010 Feb 7;10(3):274-80. doi: 10.1039/b919495a. Epub 2009 Dec 18.
7
Deterministic lateral displacement as a means to enrich large cells for tissue engineering.
Anal Chem. 2009 Nov 1;81(21):9178-82. doi: 10.1021/ac9018395.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验