Suppr超能文献

AKT(v-akt 鼠胸腺瘤病毒癌基因同源物 1)和 N-Ras(神经母细胞瘤 ras 病毒癌基因同源物)在小鼠肝脏中的共同激活通过 mTOR(雷帕霉素靶蛋白复合物 1)、FOXM1(叉头框 M1)/SKP2 和 c-Myc 途径促进快速致癌作用。

AKT (v-akt murine thymoma viral oncogene homolog 1) and N-Ras (neuroblastoma ras viral oncogene homolog) coactivation in the mouse liver promotes rapid carcinogenesis by way of mTOR (mammalian target of rapamycin complex 1), FOXM1 (forkhead box M1)/SKP2, and c-Myc pathways.

机构信息

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA.

出版信息

Hepatology. 2012 Mar;55(3):833-45. doi: 10.1002/hep.24736. Epub 2011 Dec 19.

Abstract

UNLABELLED

Activation of v-akt murine thymoma viral oncogene homolog (AKT) and Ras pathways is often implicated in carcinogenesis. However, the oncogenic cooperation between these two cascades in relationship to hepatocellular carcinoma (HCC) development remains undetermined. To investigate this issue, we generated a mouse model characterized by combined overexpression of activated forms of AKT and neuroblastoma Ras viral oncogene homolog (N-Ras) protooncogenes in the liver by way of hydrodynamic gene transfer. The molecular mechanisms underlying crosstalk between AKT and N-Ras were assessed in the mouse model and further evaluated in human and murine HCC cell lines. We found that coexpression of AKT and N-Ras resulted in a dramatic acceleration of liver tumor development when compared with mice overexpressing AKT alone, whereas N-Ras alone did not lead to tumor formation. At the cellular level, concomitant up-regulation of AKT and N-Ras resulted in increased proliferation and microvascularization when compared with AKT-injected mice. Mechanistic studies suggested that accelerated hepatocarcinogenesis driven by AKT and N-Ras resulted from a strong activation of mammalian target of rapamycin complex 1 (mTORC1). Furthermore, elevated expression of FOXM1/SKP2 and c-Myc also contributed to rapid tumor growth in AKT/Ras mice, yet by way of mTORC1-independent mechanisms. The biological effects of coactivation of AKT and N-Ras were then recapitulated in vitro using HCC cell lines, which supports the functional significance of mTORC1, FOXM1/SKP2, and c-Myc signaling cascades in mediating AKT and N-Ras-induced liver tumor development.

CONCLUSION

Our data demonstrate the in vivo crosstalk between the AKT and Ras pathways in promoting liver tumor development, and the pivotal role of mTORC1-dependent and independent pathways in mediating AKT and Ras induced hepatocarcinogenesis.

摘要

未加标签

v-akt 鼠胸腺瘤病毒癌基因同源物 (AKT) 和 Ras 通路的激活常与致癌作用有关。然而,这两个级联在肝细胞癌 (HCC) 发展中的致癌协同作用仍未确定。为了研究这个问题,我们通过流体力学基因转移在肝脏中产生了一种特征为 AKT 和神经母细胞瘤 Ras 病毒癌基因同源物 (N-Ras) 原癌基因的激活形式过表达的小鼠模型。在小鼠模型中评估了 AKT 和 N-Ras 之间串扰的分子机制,并在人类和鼠 HCC 细胞系中进一步评估。我们发现,与单独过表达 AKT 的小鼠相比,AKT 和 N-Ras 的共表达导致肝脏肿瘤的发展明显加速,而单独的 N-Ras 则不会导致肿瘤形成。在细胞水平上,与 AKT 注射小鼠相比,AKT 和 N-Ras 的共上调导致增殖和微血管形成增加。机制研究表明,由 AKT 和 N-Ras 驱动的肝癌加速发生是由于哺乳动物雷帕霉素靶蛋白复合物 1 (mTORC1) 的强烈激活。此外,FOXM1/SKP2 和 c-Myc 的表达升高也有助于 AKT/Ras 小鼠的快速肿瘤生长,但通过 mTORC1 非依赖性机制。使用 HCC 细胞系在体外再现了 AKT 和 N-Ras 的共激活的生物学效应,这支持了 mTORC1、FOXM1/SKP2 和 c-Myc 信号级联在介导 AKT 和 N-Ras 诱导的肝肿瘤发生中的功能意义。

结论

我们的数据表明,AKT 和 Ras 通路在促进肝肿瘤发展中的体内串扰,以及 mTORC1 依赖性和非依赖性通路在介导 AKT 和 Ras 诱导的肝癌发生中的关键作用。

相似文献

3
E2F1 inhibits c-Myc-driven apoptosis via PIK3CA/Akt/mTOR and COX-2 in a mouse model of human liver cancer.
Gastroenterology. 2008 Oct;135(4):1322-32. doi: 10.1053/j.gastro.2008.07.012. Epub 2008 Jul 17.
4
7
SKP2 cooperates with N-Ras or AKT to induce liver tumor development in mice.
Oncotarget. 2015 Feb 10;6(4):2222-34. doi: 10.18632/oncotarget.2945.
9
MUC15 inhibits dimerization of EGFR and PI3K-AKT signaling and is associated with aggressive hepatocellular carcinomas in patients.
Gastroenterology. 2013 Dec;145(6):1436-48.e1-12. doi: 10.1053/j.gastro.2013.08.009. Epub 2013 Aug 9.
10
Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway.
Oncogene. 2016 Jul 7;35(27):3503-13. doi: 10.1038/onc.2015.411. Epub 2015 Oct 26.

引用本文的文献

2
[Pathology of liver tumours in animal models].
Pathologie (Heidelb). 2025 Jul 14. doi: 10.1007/s00292-025-01452-8.
6
Precision targeting of β-catenin induces tumor reprogramming and immunity in hepatocellular cancers.
Nat Commun. 2025 May 30;16(1):5009. doi: 10.1038/s41467-025-60457-2.
7
HHLA2 activates c-Met and identifies patients for targeted therapy in hepatocellular carcinoma.
J Exp Clin Cancer Res. 2025 May 20;44(1):153. doi: 10.1186/s13046-025-03407-6.
9
VDAC2 loss elicits tumour destruction and inflammation for cancer therapy.
Nature. 2025 Apr;640(8060):1062-1071. doi: 10.1038/s41586-025-08732-6. Epub 2025 Mar 19.
10
Suppression of Hepatocellular Carcinoma by Deletion of SIRT2 in Hepatocytes via Elevated C/EBPβ/GADD45γ.
Cell Mol Gastroenterol Hepatol. 2025;19(7):101494. doi: 10.1016/j.jcmgh.2025.101494. Epub 2025 Mar 11.

本文引用的文献

2
mTOR: from growth signal integration to cancer, diabetes and ageing.
Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35. doi: 10.1038/nrm3025. Epub 2010 Dec 15.
3
Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma.
Gastroenterology. 2011 Mar;140(3):1071-83. doi: 10.1053/j.gastro.2010.12.006. Epub 2010 Dec 11.
4
Inactivation of Ras GTPase-activating proteins promotes unrestrained activity of wild-type Ras in human liver cancer.
J Hepatol. 2011 Feb;54(2):311-9. doi: 10.1016/j.jhep.2010.06.036. Epub 2010 Sep 7.
5
The role of signaling pathways in the development and treatment of hepatocellular carcinoma.
Oncogene. 2010 Sep 9;29(36):4989-5005. doi: 10.1038/onc.2010.236. Epub 2010 Jul 19.
6
Bmi1 functions as an oncogene independent of Ink4A/Arf repression in hepatic carcinogenesis.
Mol Cancer Res. 2009 Dec;7(12):1937-45. doi: 10.1158/1541-7786.MCR-09-0333. Epub 2009 Nov 24.
7
Targeted therapy for hepatocellular carcinoma.
Nat Rev Gastroenterol Hepatol. 2009 Jul;6(7):423-32. doi: 10.1038/nrgastro.2009.86. Epub 2009 Jun 2.
8
Pivotal role of mTOR signaling in hepatocellular carcinoma.
Gastroenterology. 2008 Dec;135(6):1972-83, 1983.e1-11. doi: 10.1053/j.gastro.2008.08.008. Epub 2008 Aug 20.
9
The splicing-factor oncoprotein SF2/ASF activates mTORC1.
Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15323-7. doi: 10.1073/pnas.0801376105. Epub 2008 Oct 1.
10
Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation.
Curr Biol. 2008 Sep 9;18(17):1269-77. doi: 10.1016/j.cub.2008.07.078. Epub 2008 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验