Suppr超能文献

使用活动记录仪数据的功能线性模型测量呼吸暂停和肥胖对昼夜活动模式的影响。

Measuring the impact of apnea and obesity on circadian activity patterns using functional linear modeling of actigraphy data.

作者信息

Wang Jia, Xian Hong, Licis Amy, Deych Elena, Ding Jimin, McLeland Jennifer, Toedebusch Cristina, Li Tao, Duntley Stephen, Shannon William

机构信息

Dept, of Medicine, Washington University School of Medicine, (660 South Euclid Avenue), St, Louis, (63110), USA.

出版信息

J Circadian Rhythms. 2011 Oct 13;9(1):11. doi: 10.1186/1740-3391-9-11.

Abstract

BACKGROUND

Actigraphy provides a way to objectively measure activity in human subjects. This paper describes a novel family of statistical methods that can be used to analyze this data in a more comprehensive way.

METHODS

A statistical method for testing differences in activity patterns measured by actigraphy across subgroups using functional data analysis is described. For illustration this method is used to statistically assess the impact of apnea-hypopnea index (apnea) and body mass index (BMI) on circadian activity patterns measured using actigraphy in 395 participants from 18 to 80 years old, referred to the Washington University Sleep Medicine Center for general sleep medicine care. Mathematical descriptions of the methods and results from their application to real data are presented.

RESULTS

Activity patterns were recorded by an Actical device (Philips Respironics Inc.) every minute for at least seven days. Functional linear modeling was used to detect the association between circadian activity patterns and apnea and BMI. Results indicate that participants in high apnea group have statistically lower activity during the day, and that BMI in our study population does not significantly impact circadian patterns.

CONCLUSIONS

Compared with analysis using summary measures (e.g., average activity over 24 hours, total sleep time), Functional Data Analysis (FDA) is a novel statistical framework that more efficiently analyzes information from actigraphy data. FDA has the potential to reposition the focus of actigraphy data from general sleep assessment to rigorous analyses of circadian activity rhythms.

摘要

背景

活动记录仪提供了一种客观测量人类活动的方法。本文描述了一系列新颖的统计方法,可用于更全面地分析这些数据。

方法

描述了一种使用功能数据分析来测试通过活动记录仪测量的不同亚组活动模式差异的统计方法。为了说明这一方法,使用该方法对395名年龄在18至80岁之间、因一般睡眠医学护理转诊至华盛顿大学睡眠医学中心的参与者,统计评估呼吸暂停低通气指数(呼吸暂停)和体重指数(BMI)对通过活动记录仪测量的昼夜活动模式的影响。给出了这些方法的数学描述以及它们应用于实际数据的结果。

结果

使用Actical设备(飞利浦伟康公司)每分钟记录一次活动模式,至少记录七天。使用功能线性模型来检测昼夜活动模式与呼吸暂停和BMI之间的关联。结果表明,呼吸暂停高分组参与者在白天的活动在统计学上较低,并且我们研究人群中的BMI对昼夜模式没有显著影响。

结论

与使用汇总测量(例如,24小时平均活动、总睡眠时间)的分析相比,功能数据分析(FDA)是一个新颖的统计框架,能更有效地分析活动记录仪数据中的信息。FDA有可能将活动记录仪数据的重点从一般睡眠评估重新定位到对昼夜活动节律的严格分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验