Unitat de Química Industrial, Escola Universitàtia d'Enginyeria Tècnica Industrial de Barcelona, Universitat Politècnica de Catalunya, Comte d'Urgell 187, Barcelona, Spain.
Chemosphere. 2011 Nov;85(7):1167-75. doi: 10.1016/j.chemosphere.2011.09.008. Epub 2011 Oct 11.
The mineralization of acidic aqueous solutions of the herbicide desmetryne has been studied by electrochemical advanced oxidation processes (EAOPs) such as anodic oxidation with electrogenerated H(2)O(2) (AO-H(2)O(2)), electro-Fenton (EF) and photoelectro-Fenton (PEF) with UVA light. Electrolyses were conducted in an open and cylindrical cell with a boron-doped diamond (BDD) anode and an O(2)-diffusion cathode for H(2)O(2) generation. The main oxidizing species are ()OH radicals formed at the BDD surface in all treatments and in the bulk from Fenton's reaction between added Fe(2+) and electrogenerated H(2)O(2) in EF and PEF. A poor mineralization was attained using AO-H(2)O(2) by the slow oxidation of persistent by-products with ()OH at the BDD surface. The synergistic action of ()OH in the bulk enhanced the degradation rate in EF, although almost total mineralization was only achieved in PEF due to the additional ()OH generation and photolysis of intermediates by UVA irradiation. The effect of current, pH and herbicide concentration on the mineralization degree and mineralization current efficiency of each EAOP was examined. Desmetryne decay always followed a pseudo first-order kinetics, being more rapidly destroyed in the sequence AO-H(2)O(2)<EF<PEF. In all EAOPs, ammeline and cyanuric acid were identified as persistent heteroaromatic by-products and oxamic and formic acids were detected as generated carboxylic acids. The generation of cyanuric acid mainly by oxidation with ()OH at the BDD surface is the predominant path for desmetryne degradation. The initial nitrogen of desmetryne yielded NO(3)(-) ion in low proportion and NH(4)(+) ion in much lesser extent, suggesting that its major part was lost as volatile N-derivatives.
已通过电化学高级氧化工艺(EAOPs)研究了除草剂地麦津在酸性水溶液中的矿化作用,这些工艺包括阳极氧化与电生成的 H(2)O(2)(AO-H(2)O(2))、电-Fenton(EF)和光-Fenton(PEF)与 UVA 光。在一个带有硼掺杂金刚石(BDD)阳极和 O(2)-扩散阴极的开放式圆柱形电池中进行了电解,用于生成 H(2)O(2。在所有处理中,主要的氧化物质是在 BDD 表面形成的 ()OH 自由基,以及在 EF 和 PEF 中从添加的 Fe(2+)和电生成的 H(2)O(2)之间的芬顿反应在本体中形成的 Fenton 反应生成的 ()OH 自由基。在 AO-H(2)O(2)中,由于 BDD 表面上的 ()OH 缓慢氧化持久的副产物,矿化作用较差。在 EF 中,本体中的 ()OH 的协同作用增强了降解速率,尽管由于 UVA 照射产生的额外 ()OH 和中间体的光解,仅在 PEF 中实现了几乎完全的矿化。考察了电流、pH 值和除草剂浓度对每种 EAOP 的矿化程度和矿化电流效率的影响。地麦津的衰减始终遵循准一级动力学,在 AO-H(2)O(2)<EF<PEF 的顺序中更快地被破坏。在所有 EAOP 中,均鉴定出三聚氰胺和氰尿酸作为持久的杂芳族副产物,检测到并氧乙酸和甲酸作为生成的羧酸。地麦津降解的主要途径是在 BDD 表面上与 ()OH 发生氧化,生成氰尿酸。地麦津的初始氮以低比例生成 NO(3)(-)离子,以更小的程度生成 NH(4)(+)离子,这表明其大部分作为挥发性 N-衍生物损失。