Suppr超能文献

cheminformatics 与分子力学相结合:基于知识的构象评分和基于物理力场的命中评分函数的联合应用提高了基于结构的虚拟筛选的准确性。

Cheminformatics meets molecular mechanics: a combined application of knowledge-based pose scoring and physical force field-based hit scoring functions improves the accuracy of structure-based virtual screening.

机构信息

Laboratory for Molecular Modeling, Division of Medicinal Chemistry and Natural Products, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.

出版信息

J Chem Inf Model. 2012 Jan 23;52(1):16-28. doi: 10.1021/ci2002507. Epub 2011 Dec 14.

Abstract

Poor performance of scoring functions is a well-known bottleneck in structure-based virtual screening (VS), which is most frequently manifested in the scoring functions' inability to discriminate between true ligands vs known nonbinders (therefore designated as binding decoys). This deficiency leads to a large number of false positive hits resulting from VS. We have hypothesized that filtering out or penalizing docking poses recognized as non-native (i.e., pose decoys) should improve the performance of VS in terms of improved identification of true binders. Using several concepts from the field of cheminformatics, we have developed a novel approach to identifying pose decoys from an ensemble of poses generated by computational docking procedures. We demonstrate that the use of target-specific pose (scoring) filter in combination with a physical force field-based scoring function (MedusaScore) leads to significant improvement of hit rates in VS studies for 12 of the 13 benchmark sets from the clustered version of the Database of Useful Decoys (DUD). This new hybrid scoring function outperforms several conventional structure-based scoring functions, including XSCORE::HMSCORE, ChemScore, PLP, and Chemgauss3, in 6 out of 13 data sets at early stage of VS (up 1% decoys of the screening database). We compare our hybrid method with several novel VS methods that were recently reported to have good performances on the same DUD data sets. We find that the retrieved ligands using our method are chemically more diverse in comparison with two ligand-based methods (FieldScreen and FLAP::LBX). We also compare our method with FLAP::RBLB, a high-performance VS method that also utilizes both the receptor and the cognate ligand structures. Interestingly, we find that the top ligands retrieved using our method are highly complementary to those retrieved using FLAP::RBLB, hinting effective directions for best VS applications. We suggest that this integrative VS approach combining cheminformatics and molecular mechanics methodologies may be applied to a broad variety of protein targets to improve the outcome of structure-based drug discovery studies.

摘要

打分函数性能不佳是基于结构的虚拟筛选(VS)中的一个众所周知的瓶颈,这主要表现为打分函数无法区分真正的配体与已知的非配体(因此被称为结合假阳性)。这种缺陷导致 VS 产生大量的假阳性命中。我们假设过滤或惩罚被识别为非天然的对接构象(即构象假阳性)应该可以提高 VS 识别真正配体的性能。我们使用化学信息学领域的几个概念,开发了一种从计算对接程序生成的构象集合中识别构象假阳性的新方法。我们证明,在 13 个基准集中的 12 个数据集的 VS 研究中,使用目标特定构象(打分)过滤器与基于物理力场的打分函数(MedusaScore)相结合,可以显著提高命中率。这种新的混合打分函数在 6 个数据集(比筛选数据库的假阳性高 1%)中的 13 个数据集中的多个传统基于结构的打分函数(包括 XSCORE::HMSCORE、ChemScore、PLP 和 Chemgauss3)表现更好。我们将我们的混合方法与最近在同一 DUD 数据集上报道具有良好性能的几种新型 VS 方法进行比较。我们发现,与两种基于配体的方法(FieldScreen 和 FLAP::LBX)相比,使用我们的方法检索到的配体在化学上更加多样化。我们还将我们的方法与 FLAP::RBLB 进行比较,后者是一种高性能的 VS 方法,也同时利用受体和同源配体结构。有趣的是,我们发现使用我们的方法检索到的前几个配体与使用 FLAP::RBLB 检索到的配体高度互补,这为最佳 VS 应用提供了有效的方向。我们建议,这种结合化学信息学和分子力学方法的综合 VS 方法可以应用于广泛的蛋白质靶标,以提高基于结构的药物发现研究的结果。

相似文献

2
FieldScreen: virtual screening using molecular fields. Application to the DUD data set.
J Chem Inf Model. 2008 Nov;48(11):2108-17. doi: 10.1021/ci800110p.
4
Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
J Chem Inf Model. 2014 Oct 27;54(10):2697-717. doi: 10.1021/ci5003735. Epub 2014 Sep 30.
6
Beware of machine learning-based scoring functions-on the danger of developing black boxes.
J Chem Inf Model. 2014 Oct 27;54(10):2807-15. doi: 10.1021/ci500406k. Epub 2014 Sep 24.
10
Discrete molecular dynamics distinguishes nativelike binding poses from decoys in difficult targets.
Biophys J. 2012 Jan 4;102(1):144-51. doi: 10.1016/j.bpj.2011.11.4008. Epub 2012 Jan 3.

引用本文的文献

2
Predicting Protein-Ligand Docking Structure with Graph Neural Network.
J Chem Inf Model. 2022 Jun 27;62(12):2923-2932. doi: 10.1021/acs.jcim.2c00127. Epub 2022 Jun 14.
4
GPU-Accelerated Flexible Molecular Docking.
J Phys Chem B. 2021 Feb 4;125(4):1049-1060. doi: 10.1021/acs.jpcb.0c09051. Epub 2021 Jan 26.
5
MedusaDock 2.0: Efficient and Accurate Protein-Ligand Docking With Constraints.
J Chem Inf Model. 2019 Jun 24;59(6):2509-2515. doi: 10.1021/acs.jcim.8b00905. Epub 2019 Apr 17.
6
Maximal Unbiased Benchmarking Data Sets for Human Chemokine Receptors and Comparative Analysis.
J Chem Inf Model. 2018 May 29;58(5):1104-1120. doi: 10.1021/acs.jcim.8b00004. Epub 2018 May 8.
7
The discovery of novel HDAC3 inhibitors via virtual screening and in vitro bioassay.
J Enzyme Inhib Med Chem. 2018 Dec;33(1):525-535. doi: 10.1080/14756366.2018.1437156.
8
The Development of Target-Specific Pose Filter Ensembles To Boost Ligand Enrichment for Structure-Based Virtual Screening.
J Chem Inf Model. 2017 Jun 26;57(6):1414-1425. doi: 10.1021/acs.jcim.6b00749. Epub 2017 Jun 1.
9
Considerations of Protein Subpockets in Fragment-Based Drug Design.
Chem Biol Drug Des. 2016 Jan;87(1):5-20. doi: 10.1111/cbdd.12631. Epub 2015 Aug 31.
10
Benchmarking methods and data sets for ligand enrichment assessment in virtual screening.
Methods. 2015 Jan;71:146-57. doi: 10.1016/j.ymeth.2014.11.015. Epub 2014 Dec 3.

本文引用的文献

1
Best Practices for QSAR Model Development, Validation, and Exploitation.
Mol Inform. 2010 Jul 12;29(6-7):476-88. doi: 10.1002/minf.201000061. Epub 2010 Jul 6.
2
Density-functional theory of the electronic structure of molecules.
Annu Rev Phys Chem. 1995;46:701-28. doi: 10.1146/annurev.pc.46.100195.003413.
3
Rapid flexible docking using a stochastic rotamer library of ligands.
J Chem Inf Model. 2010 Sep 27;50(9):1623-32. doi: 10.1021/ci100218t.
4
FLAP: GRID molecular interaction fields in virtual screening. validation using the DUD data set.
J Chem Inf Model. 2010 Aug 23;50(8):1442-50. doi: 10.1021/ci100221g.
5
Optimal assignment methods for ligand-based virtual screening.
J Cheminform. 2009 Aug 25;1:14. doi: 10.1186/1758-2946-1-14.
6
MolProbity: all-atom structure validation for macromolecular crystallography.
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验