Laboratory for Molecular Modeling, Division of Medicinal Chemistry and Natural Products, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
J Chem Inf Model. 2012 Jan 23;52(1):16-28. doi: 10.1021/ci2002507. Epub 2011 Dec 14.
Poor performance of scoring functions is a well-known bottleneck in structure-based virtual screening (VS), which is most frequently manifested in the scoring functions' inability to discriminate between true ligands vs known nonbinders (therefore designated as binding decoys). This deficiency leads to a large number of false positive hits resulting from VS. We have hypothesized that filtering out or penalizing docking poses recognized as non-native (i.e., pose decoys) should improve the performance of VS in terms of improved identification of true binders. Using several concepts from the field of cheminformatics, we have developed a novel approach to identifying pose decoys from an ensemble of poses generated by computational docking procedures. We demonstrate that the use of target-specific pose (scoring) filter in combination with a physical force field-based scoring function (MedusaScore) leads to significant improvement of hit rates in VS studies for 12 of the 13 benchmark sets from the clustered version of the Database of Useful Decoys (DUD). This new hybrid scoring function outperforms several conventional structure-based scoring functions, including XSCORE::HMSCORE, ChemScore, PLP, and Chemgauss3, in 6 out of 13 data sets at early stage of VS (up 1% decoys of the screening database). We compare our hybrid method with several novel VS methods that were recently reported to have good performances on the same DUD data sets. We find that the retrieved ligands using our method are chemically more diverse in comparison with two ligand-based methods (FieldScreen and FLAP::LBX). We also compare our method with FLAP::RBLB, a high-performance VS method that also utilizes both the receptor and the cognate ligand structures. Interestingly, we find that the top ligands retrieved using our method are highly complementary to those retrieved using FLAP::RBLB, hinting effective directions for best VS applications. We suggest that this integrative VS approach combining cheminformatics and molecular mechanics methodologies may be applied to a broad variety of protein targets to improve the outcome of structure-based drug discovery studies.
打分函数性能不佳是基于结构的虚拟筛选(VS)中的一个众所周知的瓶颈,这主要表现为打分函数无法区分真正的配体与已知的非配体(因此被称为结合假阳性)。这种缺陷导致 VS 产生大量的假阳性命中。我们假设过滤或惩罚被识别为非天然的对接构象(即构象假阳性)应该可以提高 VS 识别真正配体的性能。我们使用化学信息学领域的几个概念,开发了一种从计算对接程序生成的构象集合中识别构象假阳性的新方法。我们证明,在 13 个基准集中的 12 个数据集的 VS 研究中,使用目标特定构象(打分)过滤器与基于物理力场的打分函数(MedusaScore)相结合,可以显著提高命中率。这种新的混合打分函数在 6 个数据集(比筛选数据库的假阳性高 1%)中的 13 个数据集中的多个传统基于结构的打分函数(包括 XSCORE::HMSCORE、ChemScore、PLP 和 Chemgauss3)表现更好。我们将我们的混合方法与最近在同一 DUD 数据集上报道具有良好性能的几种新型 VS 方法进行比较。我们发现,与两种基于配体的方法(FieldScreen 和 FLAP::LBX)相比,使用我们的方法检索到的配体在化学上更加多样化。我们还将我们的方法与 FLAP::RBLB 进行比较,后者是一种高性能的 VS 方法,也同时利用受体和同源配体结构。有趣的是,我们发现使用我们的方法检索到的前几个配体与使用 FLAP::RBLB 检索到的配体高度互补,这为最佳 VS 应用提供了有效的方向。我们建议,这种结合化学信息学和分子力学方法的综合 VS 方法可以应用于广泛的蛋白质靶标,以提高基于结构的药物发现研究的结果。