Suppr超能文献

NF-κB 活性在隐窝和隐窝无细胞层中的独特分隔先于并伴随着细菌感染后的增生和/或结肠炎。

Distinct compartmentalization of NF-κB activity in crypt and crypt-denuded lamina propria precedes and accompanies hyperplasia and/or colitis following bacterial infection.

机构信息

Department of Internal Medicine, Division of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.

出版信息

Infect Immun. 2012 Feb;80(2):753-67. doi: 10.1128/IAI.06101-11. Epub 2011 Dec 5.

Abstract

Citrobacter rodentium induces transmissible murine colonic hyperplasia (TMCH) and variable degrees of inflammation and necrosis depending upon the genetic background. Utilizing C. rodentium-induced TMCH in C3H/HeNHsd inbred mice, we observed significant crypt hyperplasia on days 3 and 7 preceding active colitis. NF-κB activity in the crypt-denuded lamina propria (CLP) increased within 24 h postinfection, followed by its activation in the crypts at day 3, which peaked by day 7. Increases in interleukin-α1 (IL-1α), IL-12(p40), and macrophage inflammatory protein 1α (MIP-1α) paralleled NF-κB activation, while increases in IL-1α/β, IL-6/IL-12(p40)/granulocyte colony-stimulating factor (G-CSF)/keratinocyte-derived chemokine (KC)/monocyte chemotactic protein 1 (MCP-1), and MIP-1α followed NF-κB activation leading to significant recruitment of neutrophils to the colonic mucosa and increased colonic myeloperoxidase (MPO) activity. Phosphorylation of the crypt cellular and nuclear p65 subunit at serines 276 and 536 led to functional NF-κB activation that facilitated expression of its downstream target, CXCL-1/KC, during TMCH. Distinct compartmentalization of phosphorylated extracellular signal-regulated kinase 1 and 2 ([ERK1/2] Thr(180)/Tyr(182)) and p38 (Thr(202)/Tyr(204)) in the CLP preceded increases in the crypts. Inhibition of ERK1/2 and p38 suppressed NF-κB activity in both crypts and the CLP. Dietary administration of 6% pectin or 4% curcumin in C. rodentium-infected mice also inhibited NF-κB activity and blocked CD3, F4/80, IL-1α/β, G-CSF/MCP-1/KC, and MPO activity in the CLP while not affecting NF-κB activity in the crypts. Thus, distinct compartmentalization of NF-κB activity in the crypts and the CLP regulates crypt hyperplasia and/or colitis, and dietary intervention may be a novel strategy to modulate NF-κB-dependent protective immunity to facilitate crypt regeneration following C. rodentium-induced pathogenesis.

摘要

柠檬酸杆菌诱导可传播的鼠结肠增生(TMCH),并根据遗传背景引起不同程度的炎症和坏死。在 C3H/HeNHsd 近交系小鼠中利用柠檬酸杆菌诱导的 TMCH,我们观察到在活性结肠炎前的第 3 天和第 7 天,隐窝出现明显的增生。感染后 24 小时内,CLP 中的 NF-κB 活性增加,随后在第 3 天在隐窝中激活,第 7 天达到峰值。白细胞介素-α1(IL-1α)、IL-12(p40)和巨噬细胞炎症蛋白 1α(MIP-1α)的增加与 NF-κB 激活平行,而 IL-1α/β、IL-6/IL-12(p40)/粒细胞集落刺激因子(G-CSF)/角质形成细胞衍生的趋化因子(KC)/单核细胞趋化蛋白 1(MCP-1)和 MIP-1α 的增加则跟随 NF-κB 激活,导致中性粒细胞大量募集到结肠黏膜,并增加结肠髓过氧化物酶(MPO)活性。磷酸化的隐窝细胞和核 p65 亚基丝氨酸 276 和 536 导致功能性 NF-κB 激活,在 TMCH 期间促进其下游靶标 CXCL-1/KC 的表达。CLP 中磷酸化的细胞外信号调节激酶 1 和 2 ([ERK1/2] Thr(180)/Tyr(182))和 p38 (Thr(202)/Tyr(204))的独特区室化先于隐窝中的增加。ERK1/2 和 p38 的抑制抑制了隐窝和 CLP 中的 NF-κB 活性。在感染柠檬酸杆菌的小鼠中给予 6%果胶或 4%姜黄素的饮食也抑制了 NF-κB 活性,并阻断了 CLP 中的 CD3、F4/80、IL-1α/β、G-CSF/MCP-1/KC 和 MPO 活性,而不影响隐窝中的 NF-κB 活性。因此,隐窝和 CLP 中 NF-κB 活性的独特区室化调节隐窝增生和/或结肠炎,饮食干预可能是一种调节 NF-κB 依赖性保护性免疫以促进柠檬酸杆菌诱导的发病机制后隐窝再生的新策略。

相似文献

2
Evidence of functional cross talk between the Notch and NF-κB pathways in nonneoplastic hyperproliferating colonic epithelium.
Am J Physiol Gastrointest Liver Physiol. 2013 Feb 15;304(4):G356-70. doi: 10.1152/ajpgi.00372.2012. Epub 2012 Nov 29.
3
Novel changes in NF-{kappa}B activity during progression and regression phases of hyperplasia: role of MEK, ERK, and p38.
J Biol Chem. 2010 Oct 22;285(43):33485-33498. doi: 10.1074/jbc.M110.129353. Epub 2010 Aug 14.
4
6
Effects of hypoxic exposure on immune responses of intestinal mucosa to Citrobacter colitis in mice.
Biomed Pharmacother. 2020 Sep;129:110477. doi: 10.1016/j.biopha.2020.110477. Epub 2020 Jul 6.
8
Krüppel-like factor 5 mediates transmissible murine colonic hyperplasia caused by Citrobacter rodentium infection.
Gastroenterology. 2008 Apr;134(4):1007-16. doi: 10.1053/j.gastro.2008.01.013. Epub 2008 Jan 11.
9
Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration.
Science. 2016 Sep 16;353(6305):1249-53. doi: 10.1126/science.aag3042. Epub 2016 Sep 15.
10
Citrobacter rodentium infection causes iNOS-independent intestinal epithelial dysfunction in mice.
Can J Physiol Pharmacol. 2006 Dec;84(12):1301-12. doi: 10.1139/y06-086.

引用本文的文献

1
DCLK1 isoform (DCLK1-S) as a critical player in promoting inflammation, tissue remodeling, and EMT in mouse models of colitis.
PLoS Pathog. 2025 Aug 21;21(8):e1013360. doi: 10.1371/journal.ppat.1013360. eCollection 2025 Aug.
2
Compartment specific responses to contractility in the small intestinal epithelium.
PLoS Genet. 2024 Mar 22;20(3):e1010899. doi: 10.1371/journal.pgen.1010899. eCollection 2024 Mar.
4
DCLK1 isoforms and aberrant Notch signaling in the regulation of human and murine colitis.
Cell Death Discov. 2021 Jun 17;7(1):169. doi: 10.1038/s41420-021-00526-9.
5
DCLK1 Regulates Tumor Stemness and Cisplatin Resistance in Non-small Cell Lung Cancer via ABCD-Member-4.
Mol Ther Oncolytics. 2020 May 27;18:24-36. doi: 10.1016/j.omto.2020.05.012. eCollection 2020 Sep 25.
6
DCLK1-Isoform2 Alternative Splice Variant Promotes Pancreatic Tumor Immunosuppressive M2-Macrophage Polarization.
Mol Cancer Ther. 2020 Jul;19(7):1539-1549. doi: 10.1158/1535-7163.MCT-19-0776. Epub 2020 May 5.
7
Infection-induced signals generated at the plasma membrane epigenetically regulate Wnt signaling and .
J Biol Chem. 2020 Jan 24;295(4):1021-1035. doi: 10.1074/jbc.RA119.010285. Epub 2019 Dec 13.
8
Mice Deficient in Epithelial or Myeloid Cell Iκκβ Have Distinct Colonic Microbiomes and Increased Resistance to Infection.
Front Immunol. 2019 Sep 10;10:2062. doi: 10.3389/fimmu.2019.02062. eCollection 2019.

本文引用的文献

1
Interactions between the host innate immune system and microbes in inflammatory bowel disease.
Gastroenterology. 2011 May;140(6):1729-37. doi: 10.1053/j.gastro.2011.02.012.
3
Novel changes in NF-{kappa}B activity during progression and regression phases of hyperplasia: role of MEK, ERK, and p38.
J Biol Chem. 2010 Oct 22;285(43):33485-33498. doi: 10.1074/jbc.M110.129353. Epub 2010 Aug 14.
4
Epithelial p38alpha controls immune cell recruitment in the colonic mucosa.
PLoS Pathog. 2010 Jun 3;6(6):e1000934. doi: 10.1371/journal.ppat.1000934.
5
Probiotics promote gut health through stimulation of epithelial innate immunity.
Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):454-9. doi: 10.1073/pnas.0910307107. Epub 2009 Dec 14.
6
Functional cross-talk between beta-catenin and NFkappaB signaling pathways in colonic crypts of mice in response to progastrin.
J Biol Chem. 2009 Aug 14;284(33):22274-22284. doi: 10.1074/jbc.M109.020941. Epub 2009 Jun 4.
7
Transgenic expression of VEGF in intestinal epithelium drives mesenchymal cell interactions and epithelial neoplasia.
Gastroenterology. 2009 Feb;136(2):596-606.e4. doi: 10.1053/j.gastro.2008.10.028. Epub 2008 Nov 1.
8
beta-Catenin stabilization imparts crypt progenitor phenotype to hyperproliferating colonic epithelia.
Exp Cell Res. 2009 Jan 1;315(1):97-109. doi: 10.1016/j.yexcr.2008.10.019. Epub 2008 Oct 29.
10
Inflammatory bowel disease, past, present and future: lessons from animal models.
J Gastroenterol. 2008;43(1):1-17. doi: 10.1007/s00535-007-2111-3. Epub 2008 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验