Suppr超能文献

全自动多肽和抗体的镓-68、镥-177 和碘-131 标记

Automated module radiolabeling of peptides and antibodies with gallium-68, lutetium-177 and iodine-131.

机构信息

Department of Nuclear Medicine, The University of Western Australia, Fremantle Hospital, Fremantle, Australia.

出版信息

Cancer Biother Radiopharm. 2012 Feb;27(1):72-6. doi: 10.1089/cbr.2011.1073. Epub 2011 Dec 7.

Abstract

Our objectives were to automate radiolabeling of therapeutic activities for safe, reliable, cost-effective, practical routine preparation of (177)Lu-radiopeptides, (131)I radioimmunotherapeutic agents, and (68)Ga-peptide PET diagnostics and, in particular, minimize radiation exposure to the radiopharmaceutical chemist. Reprogramming and adaptation of a commercially available synthetic module (IBA molecular; Synthera®) allowed high yield, fully automated, in-house radiolabeling of novel therapeutic and diagnostic radiopharmaceuticals under remote shielded sterile conditions. Radiochemical yield and purity was measured by instant thin-layer chromatography and high-performance liquid chromatography. (68)Ga-octreotate and (177)Lu-octreotate were synthesized, resulting in both radiochemical yield and radiochemical purity greater than 99%. Synthesis of (131)I-rituximab resulted in a yield of 60%, with a radiochemical purity greater than 99%. Using 400 MBq (68)GaCl(3) per synthesis, the estimated absorbed body and hand dose for a manual synthesis was 2 and 27 μ Sv, contrasting with automated synthesis exposure of 1.3 and 7.9 μ Sv. Using 8000 MBq (177)LuCl(3) per synthesis, the estimated absorbed body and hand dose for a manual synthesis was 44.7 and 75 μ Sv, contrasting with automated synthesis exposure of 2.5 and 20 μ Sv. Using 6000 MBq (131)I per synthesis, the estimated absorbed body and hand dose for a manual synthesis was 83.7 and 335 μ Sv, contrasting with automated synthesis exposure of 10.9 and 54.7 μ Sv. The reduction in radiation exposure by automated synthesis of radiopharmaceuticals in the Synthera® module was at least five fold. Automated synthesis of therapeutic (177)Lu and (131)I radiopharmaceuticals and (68)Ga PET agents in the shielded sterile Synthera® module is simple, practical, and efficient and virtually eliminates radiation exposure to the radiopharmaceutical chemist.

摘要

我们的目标是自动化治疗放射性药物的标记,以安全、可靠、具有成本效益且实用的方式常规制备(177)Lu-放射性肽、(131)I 放射性免疫治疗药物和(68)Ga-肽 PET 诊断剂,特别是尽量减少放射性药物化学家的辐射暴露。对商业上可用的合成模块(IBA molecular;Synthera®)进行重新编程和适配,使得新型治疗性和诊断性放射性药物的全自动、内部标记能够在远程屏蔽的无菌条件下进行。放射性化学产率和纯度通过即时薄层色谱法和高效液相色谱法进行测量。(68)Ga-奥曲肽和(177)Lu-奥曲肽的合成,得到的放射性化学产率和放射性化学纯度均大于 99%。(131)I-利妥昔单抗的合成产率为 60%,放射性化学纯度大于 99%。每次合成使用 400MBq(68)GaCl(3),手动合成的估计身体和手部吸收剂量为 2 和 27μSv,而自动化合成的暴露剂量为 1.3 和 7.9μSv。每次合成使用 8000MBq(177)LuCl(3),手动合成的估计身体和手部吸收剂量为 44.7 和 75μSv,而自动化合成的暴露剂量为 2.5 和 20μSv。每次合成使用 6000MBq(131)I,手动合成的估计身体和手部吸收剂量为 83.7 和 335μSv,而自动化合成的暴露剂量为 10.9 和 54.7μSv。通过 Synthera®模块中放射性药物的自动化合成,辐射暴露至少减少了五倍。在屏蔽无菌 Synthera®模块中,(177)Lu 和(131)I 治疗放射性药物以及(68)Ga PET 制剂的自动化合成简单、实用且高效,几乎消除了放射性药物化学家的辐射暴露。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验