Suppr超能文献

节奏性运动的基础机制:激活、张力和身体弯曲波的相互作用。

Mechanisms underlying rhythmic locomotion: interactions between activation, tension and body curvature waves.

机构信息

Department of Mechanical & Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA.

出版信息

J Exp Biol. 2012 Jan 15;215(Pt 2):211-9. doi: 10.1242/jeb.058669.

Abstract

Undulatory animal locomotion arises from three closely related propagating waves that sweep rostrocaudally along the body: activation of segmental muscles by motoneurons (MNs), strain of the body wall, and muscle tension induced by activation and strain. Neuromechanical models that predict the relative propagation speeds of neural/muscle activation, muscle tension and body curvature can reveal crucial underlying control features of the central nervous system and the power-generating mechanisms of the muscle. We provide an analytical explanation of the relative speeds of these three waves based on a model of neuromuscular activation and a model of the body-fluid interactions for leech anguilliform-like swimming. First, we deduced the motoneuron spike frequencies that activate the muscle and the resulting muscle tension during swimming in intact leeches from muscle bending moments. Muscle bending moments were derived from our video-recorded kinematic motion data by our body-fluid interaction model. The phase relationships of neural activation and muscle tension in the strain cycle were then calculated. Our study predicts that the MN activation and body curvature waves have roughly the same speed (the ratio of curvature to MN activation speed ≈0.84), whereas the tension wave travels about twice as fast. The high speed of the tension wave resulting from slow MN activation is explained by the multiplicative effects of MN activation and muscle strain on tension development. That is, the product of two slower waves (activation and strain) with appropriate amplitude, bias and phase can generate a tension wave with twice the propagation speed of the factors. Our study predicts that (1) the bending moment required for swimming is achieved by minimal MN spike frequency, rather than by minimal muscle tension; (2) MN activity is greater in the mid-body than in the head and tail regions; (3) inhibitory MNs not only accelerate the muscle relaxation but also reduce the intrinsic tonus tension during one sector of the swim cycle; and (4) movements of the caudal end are passive during swimming. These predictions await verification or rejection through further experiments on swimming animals.

摘要

波动型动物运动是由三个密切相关的传播波引起的,这些波沿身体的头尾部向尾端方向传播:运动神经元(MN)对节段性肌肉的激活、体壁的应变和肌肉张力的激活和应变诱导。预测神经/肌肉激活、肌肉张力和身体曲率相对传播速度的神经机械模型可以揭示中枢神经系统的关键控制特征和肌肉的发电机制。我们基于神经肌肉激活模型和对涡虫类鳗鱼样游泳的体液相互作用模型,对这三个波的相对速度提供了分析解释。首先,我们从肌肉弯曲力矩中推导出了完整涡虫在游泳过程中激活肌肉和产生肌肉张力的运动神经元尖峰频率。肌肉弯曲力矩是通过我们的体液相互作用模型从我们记录的运动学运动数据中推导出来的。然后计算了应变周期中神经激活和肌肉张力的相位关系。我们的研究预测,MN 激活和身体曲率波的速度大致相同(曲率与 MN 激活速度的比值≈0.84),而张力波的速度快约两倍。由于 MN 激活缓慢,张力波的速度很高,这是由 MN 激活和肌肉应变对张力发展的乘法效应解释的。也就是说,两个较慢的波(激活和应变)的乘积,具有适当的幅度、偏差和相位,可以产生一个张力波,其传播速度是两个因素的两倍。我们的研究预测:(1)游泳所需的弯矩是通过最小 MN 尖峰频率而不是最小肌肉张力来实现的;(2)MN 活动在身体中部比头部和尾部区域更大;(3)抑制性 MN 不仅加速肌肉松弛,而且在游泳周期的一个扇区中减少内在张力紧张;(4)在游泳过程中,尾部的运动是被动的。这些预测有待通过对游泳动物的进一步实验来验证或否定。

相似文献

2
Mechanisms underlying rhythmic locomotion: body-fluid interaction in undulatory swimming.
J Exp Biol. 2011 Feb 15;214(Pt 4):561-74. doi: 10.1242/jeb.048751.
3
Mechanisms underlying rhythmic locomotion: dynamics of muscle activation.
J Exp Biol. 2011 Jun 1;214(Pt 11):1955-64. doi: 10.1242/jeb.052787.
4
Muscle function in animal movement: passive mechanical properties of leech muscle.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2007 Dec;193(12):1205-19. doi: 10.1007/s00359-007-0278-y. Epub 2007 Nov 7.
5
Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
J Exp Biol. 2014 Jun 15;217(Pt 12):2110-20. doi: 10.1242/jeb.098046. Epub 2014 Mar 13.
8
Analytical insights into optimality and resonance in fish swimming.
J R Soc Interface. 2014 Jan 15;11(92):20131073. doi: 10.1098/rsif.2013.1073. Print 2014 Mar 6.
9
A consistent muscle activation strategy underlies crawling and swimming in Caenorhabditis elegans.
J R Soc Interface. 2015 Jan 6;12(102):20140963. doi: 10.1098/rsif.2014.0963.
10

引用本文的文献

1
Vectorial principles of sensorimotor decoding.
Front Hum Neurosci. 2025 Jul 7;19:1612626. doi: 10.3389/fnhum.2025.1612626. eCollection 2025.
2
Analytical insights into optimality and resonance in fish swimming.
J R Soc Interface. 2014 Jan 15;11(92):20131073. doi: 10.1098/rsif.2013.1073. Print 2014 Mar 6.
3
Biological clockwork underlying adaptive rhythmic movements.
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):978-83. doi: 10.1073/pnas.1313933111. Epub 2014 Jan 6.
4
Using computational and mechanical models to study animal locomotion.
Integr Comp Biol. 2012 Nov;52(5):553-75. doi: 10.1093/icb/ics115. Epub 2012 Sep 16.

本文引用的文献

1
Mechanisms underlying rhythmic locomotion: dynamics of muscle activation.
J Exp Biol. 2011 Jun 1;214(Pt 11):1955-64. doi: 10.1242/jeb.052787.
2
Mechanisms underlying rhythmic locomotion: body-fluid interaction in undulatory swimming.
J Exp Biol. 2011 Feb 15;214(Pt 4):561-74. doi: 10.1242/jeb.048751.
3
Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):19832-7. doi: 10.1073/pnas.1011564107. Epub 2010 Oct 29.
4
Analysis of impulse adaptation in motoneurons.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2010 Feb;196(2):123-36. doi: 10.1007/s00359-009-0499-3. Epub 2009 Dec 24.
6
Rostral versus caudal differences in mechanical entrainment of the lamprey central pattern generator for locomotion.
J Neurophysiol. 2008 May;99(5):2408-19. doi: 10.1152/jn.01085.2007. Epub 2008 Feb 6.
7
Muscle function in animal movement: passive mechanical properties of leech muscle.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2007 Dec;193(12):1205-19. doi: 10.1007/s00359-007-0278-y. Epub 2007 Nov 7.
8
Systems-level modeling of neuronal circuits for leech swimming.
J Comput Neurosci. 2007 Feb;22(1):21-38. doi: 10.1007/s10827-006-9648-7. Epub 2006 Sep 19.
9
Neuronal control of leech behavior.
Prog Neurobiol. 2005 Aug;76(5):279-327. doi: 10.1016/j.pneurobio.2005.09.004. Epub 2005 Nov 2.
10
Impact of movement and movement-related feedback on the lamprey central pattern generator for locomotion.
J Exp Biol. 2001 Jul;204(Pt 13):2361-70. doi: 10.1242/jeb.204.13.2361.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验