Suppr超能文献

HHblits:通过 HMM-HMM 比对进行快速迭代的蛋白质序列搜索。

HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment.

机构信息

Gene Center and Center for Integrated Protein Science Munich, Ludwig-Maximilians Universität München, Munich, Germany.

出版信息

Nat Methods. 2011 Dec 25;9(2):173-5. doi: 10.1038/nmeth.1818.

Abstract

Sequence-based protein function and structure prediction depends crucially on sequence-search sensitivity and accuracy of the resulting sequence alignments. We present an open-source, general-purpose tool that represents both query and database sequences by profile hidden Markov models (HMMs): 'HMM-HMM-based lightning-fast iterative sequence search' (HHblits; http://toolkit.genzentrum.lmu.de/hhblits/). Compared to the sequence-search tool PSI-BLAST, HHblits is faster owing to its discretized-profile prefilter, has 50-100% higher sensitivity and generates more accurate alignments.

摘要

基于序列的蛋白质功能和结构预测,关键取决于序列搜索的灵敏度和所得序列比对的准确性。我们提供了一个开源的通用工具,该工具通过轮廓隐马尔可夫模型(HMM)表示查询和数据库序列:“基于 HMM-HMM 的闪电般快速迭代序列搜索”(HHblits;http://toolkit.genzentrum.lmu.de/hhblits/)。与序列搜索工具 PSI-BLAST 相比,HHblits 由于其离散轮廓预过滤器而更快,其灵敏度提高了 50-100%,并且生成了更准确的比对。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验